Project description:In this study, five endophytic fungi belonging to the Aspergillus and Alternaria genera were isolated from Lagopsis supina. The antimicrobial activity of all fungal fermented extracts against Staphylococcus and Fusarium graminearum was tested using the cup-plate method. Among them, Aspergillus ochraceus XZC-1 showed the best activity and was subsequently selected for large-scale fermentation and bioactivity-directed separation of the secondary metabolites. Four compounds, including 2-methoxy-6-methyl-1,4-benzoquinone (1), 3,5-dihydroxytoluene (2), oleic acid (3), and penicillic acid (4) were discovered. Here, compounds 1 and 4 displayed anti-fungal activity against F. graminearum, F. oxysporum, F. moniliforme, F. stratum, Botrytis cinerea, Magnaporthe oryzae, and Verticillium dahliae with diverse MIC values (128-512 μg/ml), which were close to that of the positive control antifungal, actidione (64-128 μg/ml). Additionally, compounds 1 and 4 also exhibited moderate antibacterial activity against S. aureus, Listeria monocytogenes, Escherichia coli, and Salmonella enterica, with low MIC values (8-64 μg/ml). Moreover, compounds 1 and 4 displayed selective cytotoxicity against cancer cell lines as compared with the normal fibroblast cells. Therefore, this study proposes that the endophytic fungi from L. supina can potentially produce bioactive molecules to be used as lead compounds in drugs or agricultural antibiotics.
Project description:BackgroundEuphorbia supina (ES) plant has been used as treatment for inflammatory conditions. The antibacterial effect and the anti-inflammatory mechanism of ES for Propionibacterium (P.) acnes-induced inflammation in THP-1 cells and acne animal model remain unclear. Therefore, the objective of the present study was to determine the antibacterial and anti-inflammatory activities of ES against P. acnes, the etiologic agent of skin inflammation.MethodThe antibacterial activities of ES were tested with disc diffusion and broth dilution methods. Cytotoxicity of ES at different doses was evaluated by the MTT assay. THP-1 cells were stimulated by heat-killed P. acnes in the presence of ES. The pro-inflammatory cytokines and mRNA levels were measured by ELISA and real-time-PCR. MAPK expression was analyzed by Western blot. The living P. acnes was intradermally injected into the ear of BLBC/c mice. Subsequently, chemical composition of ES was analyzed by liquids chromatography-mass spectrometry (LC-MS).ResultES had stronger antibacterial activity against P. acnes and inhibitory activity on lipase. ES had no significant cytotoxicity on THP-1 cells. ES suppressed the mRNA levels and production of IL-8, TNF-a, IL-1? in vitro. ES inhibited the expression levels of pro-inflammatory cytokines and the MAPK signaling pathway. Ear thickness and inflammatory cells were markedly reduced by ES treatment. Protocatechuic acid, gallic acid, quercetin, and kaempferol were detected by LC-MS analysis in ES.ConclusionsOur results demonstrate antibacterial and anti-inflammatory activities of ES extract against P. acnes. It is suggested that ES extract might be used to treatment anti-inflammatory skin disease.
| S-EPMC6161423 | biostudies-literature
Project description:The complete chloroplast genome of Lagopsis supina