Project description:Plant roots can regenerate after complete excision of their tip, including the stem cell niche, but it is not clear what developmental program mediates such repair. Here, we use a combination of lineage tracing, single-cell RNA-seq, and marker analysis to test different models of tissue reassembly. We show that rapid cell-identity transitions lead to the formation of a new stem cell niche from multiple remnant tissues. The transcriptome of regenerating cells prior to stem cell activation resembled that of the embryonic root progenitor, and regeneration defects were more severe in embryonic versus adult root mutants. Furthermore, the signaling domains of the hormones auxin and cytokinin mirrored their embryonic dynamics, and manipulation of both hormones altered the position of new tissues and stem cell niche markers. Our findings suggest that plant organ regeneration resembles the developmental stages of embryonic patterning and is guided by spatial information laid down by complementary hormone domains. 215 single cells isolated from marked stele tissue (either using WOL or AHP6 promoters), before, at 3h, 16h and 46h post root tip decapitation
Project description:To reveal transcriptome dynamics during adventitious root formation in a coniferous tree, C. japonica, we conducted custom microarry experiments. Three parts from cuttings of easy-to-root clone of C. japonica were collected at eight time points during adventitious root formation. The results revealed major turning points on transcriptome toward adventitious root formation and the expression behavior of genes related to carbohydrate, plant hormone and others suggested the important biological changes for adventitious root formation.
Project description:The root system is a crucial determinant of plant growth potential because of its important functions, e.g., acquisition of water and nutrients, structural support, and interaction with symbiotic organisms. Elucidating the molecular mechanisms of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants including rice. As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray analysis approach.
Project description:Plant roots can regenerate after complete excision of their tip, including the stem cell niche, but it is not clear what developmental program mediates such repair. Here, we use a combination of lineage tracing, single-cell RNA-seq, and marker analysis to test different models of tissue reassembly. We show that rapid cell-identity transitions lead to the formation of a new stem cell niche from multiple remnant tissues. The transcriptome of regenerating cells prior to stem cell activation resembled that of the embryonic root progenitor, and regeneration defects were more severe in embryonic versus adult root mutants. Furthermore, the signaling domains of the hormones auxin and cytokinin mirrored their embryonic dynamics, and manipulation of both hormones altered the position of new tissues and stem cell niche markers. Our findings suggest that plant organ regeneration resembles the developmental stages of embryonic patterning and is guided by spatial information laid down by complementary hormone domains.