Project description:S. pastorianus strains are hybrids of S. cerevisiae and S. eubayanus that have been domesticated for several centuries in lager-beer brewing environments. As sequences and structures of S. pastorianus genomes are being resolved, molecular mechanisms and evolutionary origin of several industrially relevant phenotypes remain unknown. This study investigates how maltotriose metabolism, a key feature in brewing, may have arisen in early S. eubayanus x S. cerevisiae hybrids. To address this question, we generated a near-complete genome assembly of Himalayan S. eubayanus strains of the Holarctic subclade. This group of strains have been proposed to be the origin of the S. eubayanus subgenome of current S. pastorianus strains. The Himalayan S. eubayanus genomes harbored several copies of an SeAGT1 -oligoglucoside transporter gene with high sequence identity to genes encountered in S. pastorianus. Although Himalayan S. eubayanus strains are unable to grown on maltose and maltotriose, their maltose-hydrolase and SeMALT1 and SeAGT1 maltose-transporter genes complemented the corresponding null mutants of S. cerevisiae. Expression, in a Himalayan S. eubayanus strain, of a functional S. cerevisiae maltose-metabolism regulator gene (MALx3) enabled growth on oligoglucosides. The hypothesis that the maltotriose-positive phenotype in S. pastorianus is a result of heterosis was experimentally tested by constructing a S. cerevisiae x S. eubayanus laboratory hybrid with a complement of maltose-metabolism genes that resembles that of current S. pastorianus strains. The ability of this hybrid to consume maltotriose in brewer's wort demonstrated regulatory cross talk between sub-genomes and thereby validated this hypothesis. These results provide experimental evidence of the evolutionary origin of an essential phenotype of lager-brewing strains and valuable knowledge for industrial exploitation of laboratory-made S. pastorianus-like hybrids.
Project description:Effect of FLO8 or MSS11 deletion and -overexpression on yeast transcript profiles compared to wild type in laboratory yeast strains Σ1278b and S288c.
Project description:The selection of bioengineering platform strains and engineering strategies to improve the stress resistance of Saccharomyces cerevisiae remains a pressing need in bio-based chemical production. Thus, a systematic effort to exploit the genotypic and phenotypic diversity to boost yeast’s industrial value is still urgently needed. Here, we analyzed 5400 growth curves obtained from 36 S. cerevisiae strains and comprehensively profiled their resistances against 13 industrially relevant stresses. We observed that bioethanol and brewing strains exhibit higher resistance against acidic conditions, however, plant isolates tend to have wider range of resistance, which may be associated with their metabolome and fluxome signatures in TCA cycle and fatty acid metabolism. By deep genomic sequencing we found that industrial strains have more genomic duplications especially affecting transcription factors, presenting disparate evolutionary paths in comparison to the environmental strains which have more InDels, gene deletions and strain-specific genes. Genome-wide association studies coupled with protein-protein interaction networks uncovered novel genetic determinants of stress resistances. These resistance-related engineering targets and strain rankings provide a valuable source for engineering significantly improved industrial platform strains.</br></br> This metabolomic study of 36 yeast strains measured intra- and extracellular metabolome under standard glucose medium, profiled by GS-MS. This is part of a multi-omic study on yeast strain collection.