Project description:The purpose of this study was to explore the mechanism of aerobic decay of whole-plant corn silage and the effect of Neolamarckia cadamba essential oil on aerobic stability of whole-plant corn silage. Firstly, the dynamic changes of temperature, microbial community and metabolite content after aerobic exposure of whole-plant corn silage were determined, and the main microbial species and mechanism leading to aerobic spoilage of whole-plant corn silage were analyzed. The N. cadamba essential oil was extracted from fresh N. cadamba leaves by steam distillation, and the minimal inhibitory concentration, antibacterial stability and bacteriostatic mechanism of N. cadamba essential oil against undesirable microorganisms in whole-plant corn silage were determined. According to the minimum inhibitory concentration of N. cadamba essential oil on undesirable microorganisms in silage, N. cadamba essential oil was added to whole-plant corn silage to explore the effect of N. cadamba essential oil on the aerobic stability of whole-plant corn silage.
Project description:In the present work, Abortiporus biennis, a white-rot fungus, was studied in regard to its lignocellulolytic enzymatic potential. Secretomics analyses, combined with biochemical methods, were employed to study the enzymatic machinery of the strain, after growth in corn stover cultures and xylose-based defined media. The results revealed the presence of all the necessary enzymatic activities for complete breakdown of the lignocellulosic substrate, while the prominent role of oxidative enzymes in the lignocellulolytic strategy of the strain became evident. Two novel laccases, AbiLac1 and AbiLac2, were isolated from the culture supernatant of this fungus.