Project description:We performed a comparative study to determine the proteome of extracellular vesicles (EVs) from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov), recovered from two growth conditions in vitro. Label-free quantitative protemics was used to find significant enrichment of proteins between EV samples, the secretome (secreted-soluble proteins) and the cell lysate. Our results show that some proteins were exclusive to EVs and were upregulated compared to the secretome or cell lysate.
Project description:Pathogenicity and genetic diversity of Fusarium oxysporum from geographically widespread native Gossypium populations, including a cotton growing area believed to be the center of origin of VCG 01111 and VCG 01112 of F. oxysporum f. sp. vasinfectum (Fov) in Australia, was determined using glasshouse bioassays and AFLPs. Five lineages (A-E) were identified among 856 isolates. Of these, 12% were strongly pathogenic on cotton, 10% were weakly pathogenic and designated wild Fov, while 78% were nonpathogenic. In contrast to the occurrence of pathogenic isolates in all five lineages in soils associated with wild Gossypium, in cotton growing areas only three lineages (A, B, E) occurred and all pathogenic isolates belonged to two subgroups in lineage A. One of these contained VCG 01111 isolates while the other contained VCG 01112 isolates. Sequence analyses of translation elongation factor-1α, mitochondrial small subunit rDNA, nitrate reductase and phosphate permease confirmed that Australian Fov isolates were more closely related to lineage A isolates of native F. oxysporum than to Fov races 1-8 found overseas. These results strongly support a local evolutionary origin for Fov in Australian cotton growing regions.
Project description:Tandem Mass Tag (TMT)-based quantitative proteomic analysis of tomato soil borne pathogen Fusarium oxysporum f. sp. radicis-lycopersici growth, and metabolism when treated with plant natural volatile organic compounds linalool. The Forl strain was cultured on PDA supplied with 0.8 mL/L linalool for 6 days at 25°C. The fungal strain on PDA supplied with only 0.1% Tween80 was cultured as the control. Three biological replicates were established for each treatment.
Project description:Cotton (Gossypium spp.) is the most important fibre crop worldwide. Black root rot and Fusarium wilt are two major diseases of cotton caused by soil-borne Berkeleyomyces rouxiae and Fusarium oxysporum f. sp. vasinfectum (Fov), respectively. Phenotyping plant symptoms caused by soil-borne pathogens has always been a challenge. To increase the uniformity of infection, we adapted a seedling screening method that directly uses liquid cultures to inoculate the plant roots and the soil. Four isolates, each of B. rouxiae and Fov, were collected from cotton fields in Australia and were characterised for virulence on cotton under controlled plant growth conditions. While the identities of all four B. rouxiae isolates were confirmed by multilocus sequencing, only two of them were found to be pathogenic on cotton, suggesting variability in the ability of isolates of this species to cause disease. The four Fov isolates were phylogenetically clustered together with the other Australian Fov isolates and displayed both external and internal symptoms characteristic of Fusarium wilt on cotton plants. Furthermore, the isolates appeared to induce varied levels of plant disease severity indicating differences in their virulence on cotton. To contrast the virulence of the Fov isolates, four putatively non-pathogenic Fusarium oxysporum (Fo) isolates collected from cotton seedlings exhibiting atypical wilt symptoms were assessed for their ability to colonise cotton host. Despite the absence of Secreted in Xylem genes (SIX6, SIX11, SIX13 and SIX14) characteristic of Fov, all four Fo isolates retained the ability to colonise cotton and induce wilt symptoms. This suggests that slightly virulent strains of Fo may contribute to the overall occurrence of Fusarium wilt in cotton fields. Findings from this study will allow better distinction to be made between plant pathogens and endophytes and allow fungal effectors underpinning pathogenicity to be explored.
Project description:We performed RNA-seq analysis of the root transcriptional response to Fusarium oxysporum f.sp. vasinfectum (FOV) race 4 (FOV4) infection in Gossypium barbadense, also known as Pima cotton. Susceptible Gossypium barbadense inbred lines Pima S-7 (PI 560140) and Pima 3-79 susceptible to Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV)] race 4 (FOV4), and Pima S-6 (PI 608346) which is resistant to FOV4 infection, were used for the preparation of cDNA libraries and further RNA-seq analyses. An isolate of FOV4 (FOV CA-14) from a naturally infested field in Fresno County in the San Joaquin Valley, California was used in this study.
Project description:Extracellular vesicles (EVs) represent a system for the coordinated secretion of a variety of molecular cargo including proteins, lipids, nucleic acids, and metabolites. They have an essential role in intercellular communication in multicellular organisms and have more recently been implicated in host-pathogen interactions. Study of the role for EVs in fungal biology has focused on pathogenic yeasts that are major pathogens in humans. In this study we have expanded the investigation of fungal EVs to plant pathogens, specifically the major cotton pathogen Fusarium oxysporum f. sp. vasinfectum. EVs isolated from F. oxysporum f. sp. vasinfectum culture medium have a morphology and size distribution similar to EVs from yeasts such as Candida albicans and Cryptococcus neoformans. A unique feature of the EVs from F. oxysporum f. sp. vasinfectum is their purple color, which is predicted to arise from a napthoquinone pigment being packaged into the EVs. Proteomic analysis of F. oxysporum f. sp. vasinfectum EVs revealed that they are enriched in proteins that function in synthesis of polyketides as well as proteases and proteins that function in basic cellular processes. Infiltration of F. oxysporum f. sp. vasinfectum EVs into the leaves of cotton or N. benthamiana plants led to a phytotoxic response. These observations lead to the hypothesis that F. oxysporum f. sp. vasinfectum EVs are likely to play a crucial role in the infection process.
Project description:Disease resistance is one of the most complicated yet important plant traits. The potential functions of long noncoding RNAs (lncRNAs) in response to pathogenic fungi remain unclear. In this study, we sequenced the transcriptomes of four different sea-island cotton (Gossypium barbadense) recombinant inbred lines (RILs) with susceptible, highly susceptible, highly resistant, or super highly resistant phenotypes and compared their responses to Fusarium oxysporum f. sp. vasinfectum (Fov) infection with those of their susceptible and resistant parents. Infection-induced protein coding genes were highly enriched in similar disease resistance-related pathways regardless of fungal susceptibility. In contrast, we found that the expression of a large number of Fov infection-induced lncRNAs was positively correlated with plant susceptibility. Bioinformatics analysis of potential target mRNAs of lncRNAs with both trans-acting and cis-acting mechanisms showed that mRNAs co-expressed or co-located with Fov-regulated lncRNAs were highly enriched in disease resistance-related pathways, including glutathione metabolism, glycolysis, plant hormone signal transduction, anthocyanin biosynthesis, and butanoate metabolism. Together these results suggest that lncRNAs could play a significant role in the response to pathogenic fungal infection and the establishment of disease resistance. The transcriptional regulation of these infection-susceptible lncRNAs could be coordinated with infection-susceptible mRNAs and integrated into a regulatory network to modulate plant-pathogen interactions and disease resistance. Fov-susceptible lncRNAs represent a novel class of molecular markers for breeding of Fov-resistant cotton cultivars.
Project description:Fusarium oxysporum causes Fusarium wilt syndrome in more than 120 different plant hosts, including globally important crops such as tomato, cotton, banana, melon, etc. F. oxysporum shows high host specificity in over 150 formae speciales and have been ranked in the top 10 plant fungal pathogens. Although three PMTs encoded by the pmt1, pmt2, and pmt4 are annotated in the genome of F. oxysporum, their functions have not been reported. As O-mannosylation is not found in plants, a comprehensive understanding of PMTs in F. oxysporum becomes attractive for the development of new strategy against Fusarium wilt. In order to understand the molecular mechanism of the differential functions of three PMTs, a comparative O-glycoproteome analysis of the pmt mutants were carried out.