Project description:Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to deciphered the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found that there is an over-abundant proteins relevant to Nitrate and amino acids metabolisms in the Salt-tolerant cultivars. The significant increase in expression of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. And the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including Sterol side chain reductase, gamma aminobutyrate transaminase and Starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future
Project description:To characterize the PTI response of tomato and the effect of the delivery of a subset of effectors, we performed an RNA-seq analysis of tomato Rio Grande prf3 leaves challenged with either the flgII-28 peptide or the following bacterial strains: Agrobacterium tumefaciens GV2260, Pseudomonas fluorescens 55, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato (Pst) DC3000, Pst DC3000 deltahrcQ-U deltafliC and Pst DC3000 deltaavrPto deltaavrPtoB. NOTE: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:PHYTOCHROME-INTERACTING FACTORs (PIFs) regulate growth-related gene expression in response to environmental conditions. Among their diverse functions in regulating signal responses, PIFs play an important role in thermomorphogenesis (the response to increased ambient temperature) and in the shade-avoidance response. While numerous studies have examined the varied roles of PIFs in Arabidopsis (Arabidopsis Thaliana), their roles in crop plants remain poorly investigated. This study delves into the conservation of PIFs activity among species by examining their functions in tomato (Solanum lycopersicum) and comparing them to known PIF functions in Arabidopsis using single and higher-order mutants of tomato PIF genes (SlPIFs). We demonstrate that, in contrast to Arabidopsis, PIFs are not required for thermomorphogenesis-induced stem elongation in tomato. In addition, whereas Arabidopsis PIF8 has a minor effect on plant growth, tomato SlPIF8a plays a key role in the low red/far-red (R/FR) response. In contrast, SlPIF4 and SlPIF7s play minor roles in this process. We also investigated the tissue-specific low R/FR response in tomato seedlings and demonstrate that the aboveground organs exhibit a conserved response to low R/FR, which is regulated by SlPIFs. Our findings provide insights into PIF-mediated responses in crop plants, which may guide future breeding strategies to enhance yield under high planting densities.
Project description:Understanding the genetic basis of plants’ response to environmental stresses such as drought and salinity is vital for improving the future crop productivity and for deciphering the evolutionary mechanisms of adaptation and speciation. Here, we screened for genes and functional groups that are potentially involved in drought tolerance in tomato by comparing genome-wide transcriptome profiles of drought-sensitive S. lycopersicum and drought-tolerant S. pimpinellifolium populations under control and water deficit conditions. We also compared the transcriptome profiles from this study and a previous salt treatment study to investigate expression similarities and differences in gene expression patterns between water and salt stress responses, which are physiologically and biochemically similar. Stress-induced genes such as dehydration responsive element binding (DREB) protein, ABA-response element binding factor (AREB)-like protein, heat shock proteins, and chaperones were commonly up-regulated in S. lycopersicum and S. pimpinellifolium. Genes such as WRKY transcription factors and 1-aminocyclopropane-1-carboxylate (ACC) synthase exhibited striking differences in both the baseline expression under the control condition as well as expression changes in response to water deficit, suggesting that the two species have accumulated heritable differences in gene expression patterns. At the genome scale, there was a tendency that down-regulated genes in S. lycopersicum are more neutral or even up-regulated in S. pimpinellifolium, suggesting that S. pimpinellifolium may be able to maintain cellular activities during prolonged droughts. In comparison of water and salt stress responses, known stress-induced genes such as DREB protein, AREB-like protein, and nine-cis-epoxycarotenoid dioxygenase (NCED) were commonly up-regulated in response to these stresses. However, we also found fundamental differences between these stress responses in terms of genome-wide expression patterns, partly attributable to the difference in how these stresses were applied during the experiments.