Project description:We report the application for high-throughput profiling of transcriptome, chromatin-associated proteins and histone-modifications on a genome-wide level in iPSC-derived family control astrocytes vs LFS (Li-Fraumeni Syndrome) patient astrocytes.
2023-02-18 | GSE163088 | GEO
Project description:Li-Fraumeni syndrome in Tunisian patients
Project description:Whole Exome sequencing of two patients with Cardiac angiosarcoma in Li-Fraumeni-like families discovers that a mutation in the pot1 gene is responsible for cardiac angiosarcoma in tp53-negative li-fraumeni-like families
Project description:Multiple family members with cancer or individuals with multiple primary cancers are indicative of potential genetic etiology1. Germline mutations in TP53 cause a rare high penetrance cancer syndrome, Li Fraumeni Syndrome (LFS)2. We identified a TP53 tetramerization domain (TD) missense mutation c.1000G>C;p.G334R, in a family with LFS-associated cancers. Twenty-one additional probands were identified, and available tumors showed biallelic somatic inactivation of TP53. The majority of families were of Ashkenazi Jewish descent, and the TP53 c.1000G>C allele was found on a commonly inherited haplotype. While classical p53 target gene activation was maintained in p.G334R mutant cell lines treated with Nutlin-3a, a subset of p53 target genes, including PCLO, PLTP, PLXNB3 and LCN15, showed defective transactivation. Structural analysis demonstrated thermal instability of the mutant TD, and the G334R mutant protein showed increased preponderance of mutant conformation protein. TP53 c.1000G>C;p.G334R is a rare AJ-predominant mutation associated with low penetrance Li-Fraumeni Syndrome
Project description:WGS data of clonally expanded HSPCs from a Li-Fraumeni patient at the time of second cancer (Burkitt lymphoma and <5% t-MN) after primary osteosarcoma diagnosis and a reference MSC bulk.
Project description:In vitro modeling of human disease has recently become feasible with the adoption of induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from an Li-Fraumeni Syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). Several members of this family carried a heterozygous p53(G245D) mutation and presented with a broad spectrum of tumors including OS. Osteoblasts (OBs) differentiated from iPSC-derived mesenchymal stem cells (MSCs) recapitulated OS features including defective osteoblastic differentiation (OB differentiation) as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. In silico cytogenetic region enrichment analysis (CREA) demonstrated that LFS-derived OBs do not have genomic rearrangements and hence are a particularly valuable tool for elucidating early oncogenic events prior to the accumulation of secondary alterations. LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteogenic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) and functional genomic analyses, we found that H19-mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). Downregulation of DCN impairs H19-mediated osteogenic differentiation and tumor suppression. In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs and also provide molecular insights into the role of the IGN in p53 mutation-mediated tumorigenesis. mRNAseq profiling during mesenchymal stem cell differentiation to osteoblasts.