Project description:Using a high-density tiling array containing 25-mer oligonucleotides at the resolution of one every four base pairs across the entire genome, we developed In vivo Protein Occupancy Display (IPOD), a technology that reveals protein occupancy across an entire bacterial chromosome at the resolution of individual binding sites. Application to Escherichia coli reveals thousands of protein occupancy peaks, highly enriched within and in close proximity to non-coding regulatory regions.
Project description:This SuperSeries is composed of the following subset Series: GSE41936: Rho and NusG suppress pervasive antisense transcription in Escherichia coli [ChIP-chip]. GSE41938: Rho and NusG suppress pervasive antisense transcription in Escherichia coli [tiling array]. GSE41939: Rho and NusG suppress pervasive antisense transcription in Escherichia coli [RNA-seq]. Refer to individual Series
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Experimentally mapped transcriptome structure of Escherichia coli BL21(DE3) by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 10 nt).
Project description:An oligonucleotide tiling array technology is utilized to measure the entire Escherichia coli transcriptome and its transcriptional changes after induction of the adaptive response by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Keywords: Gene expression during the adaptive response in Escherichia coli
Project description:We report the effect of oxygenation state in lactose grown escherichia coli producing recombinant proteins. To shed more light on the mechanistic correlation between the uptake of lactose and dissolved oxygen, a comprehensive study has been undertaken with the E. coli BL21 (DE3) strain. Differences in consumption pattern of lactose, metabolites, biomass and product formation due to aerobiosis have been investigated. Transcriptomic profiling of metabolic changes due to aerobic process and microaerobic process during protein formation phase has been studied and the results provide a deeper understanding of protein production in E. coli BL21 (DE3) strains with lactose based promoter expression systems.This study also provides a scientific understanding of escherichia coli metabolism upon oxygen fluctuations.
Project description:Heat-responsive and time-resolved changes in transcriptome of E. coli BL21(DE3) Experimentally mapped transcriptome structure of Escherichia coli BL21(DE3) by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 10 nt).
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.