Project description:Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, -glucosidases, endoxylanases, -xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.
Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:Soils are a huge reservoir of organic C, and the efflux of CO2 from soils is one of the largest fluxes in the global C cycle. Out of all natural environments, soils probably contain the greatest microbial biomass and diversity, which classifies them as one of the most challenging habitats for microbiologists (Mocali and Benedetti, 2010). Until today, it is not well understood how soil microorganisms will respond to a warmer climate. Warming may give competitive advantage to species adapted to higher temperatures (Rinnan et al., 2009). The mechanisms behind temperature adaptations of soil microbes could be shifts within the microbial community. How microbial communities will ultimately respond to climate change, however, is still a matter of speculation. As a post-genomic approach in nature, metaproteomics allows the simultaneous examination of various protein functions and responses, and therefore is perfectly suited to investigate the complex interplay between respiration dynamics, microbial community architecture, and ecosystem functioning in a changing environment (Bastida et al., 2012). Thereby we will gain new insights into responses to climate change from a microbial perspective. Our study site was located at 910 m a.s.l. in the North Tyrolean Limestone Alps, near Achenkirch, Austria The 130 year-old mountain forests consist of Norway spruce (Picea abies) with inter-spread of European beech (Fagus sylvatica) and silver fir (Abies alba). Three experimental plots with 2 × 2 m warmed- and control- subplots were installed in 2004. The temperature difference between control and warmed plots was set to 4 °C at 5 cm soil depth. Soil was warmed during snow-free seasons. In order to extract proteins from forest soil samples, the SDS–phenol method was adopted as previously described by Keiblinger et al. (2012). Protein extractions were performed from each subplot soil samples. The abundance of protein-assigned microbial phylogenetic and functional groups, were calculated based on the normalized spectral abundance factor (NSAF, Zybailov et al., 2006).
Project description:Anthropogenic nitrogen (N) deposition may affect soil organic carbon (SOC) decomposition, thus affecting the global terrestrial carbon (C) cycle. However, it remains unclear how the level of N deposition affects SOC decomposition by regulating microbial community composition and function, especially C-cycling functional genes structure. We investigated the effects of short-term N addition on soil microbial C-cycling functional gene composition, SOC-degrading enzyme activities, and CO2 emission in a 5-year field experiment established in an artificial Pinus tabulaeformis forest on the Loess Plateau, China.