Project description:As exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important hybrid Populus clones (P. deltoides · P. nigra, DN34, and P. nigra · P. maximowiczii, NM6) was characterized over a diurnal period using a 4 · 2 · 2 completely randomized factorial ANOVA experimental design (four time points, two genotypes, and two treatment conditions) using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus.
Project description:As exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important hybrid Populus clones (P. deltoides · P. nigra, DN34, and P. nigra · P. maximowiczii, NM6) was characterized over a diurnal period using a 4 · 2 · 2 completely randomized factorial ANOVA experimental design (four time points, two genotypes, and two treatment conditions) using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus. 48 arrays total. 2 genotypes (DN34, NM6), 4 time points (midnight, pre-dawn, mid-day, late day), 2 water regimes (well-watered, water-limited). 3 biological replicates per treatment.
Project description:Under natural conditions, plants experience episodes of drought for periods of days or longer. Plants respond to drought stress by reconfiguring their transcriptome activity. Transcriptome changes in response to drought are dynamic, and are likely to be shaped by mitigating factors such as diel signals. To gain insights into the dynamics of transcriptome reconfiguration in response to gradual soil drying, the drought-induced transcriptomes of Arabidopsis thaliana were examined at four time points over a single diel period – midday, late day, midnight, and pre-dawn. A core set of genes was identified that was responsive to drought, independent of the time of day at which they were measured. Strikingly, the magnitude of the drought-induced changes for these genes varied in a time-of-day-dependent manner. An additional set of time-of-day-specific drought-responsive genes were also identified. The diurnal patterns of transcript accumulation for these genes was strongly influenced by drought stress. This study indicates that analysis of a single time point would miss suites of drought-responsive genes that are revealed through assessment of the dynamics of diurnal changes, emphasizing the value of characterizing multiple time-of-day-specific drought transcriptomes.
Project description:Under natural conditions, plants experience episodes of drought for periods of days or longer. Plants respond to drought stress by reconfiguring their transcriptome activity. Transcriptome changes in response to drought are dynamic, and are likely to be shaped by mitigating factors such as diel signals. To gain insights into the dynamics of transcriptome reconfiguration in response to gradual soil drying, the drought-induced transcriptomes of Arabidopsis thaliana were examined at four time points over a single diel period â midday, late day, midnight, and pre-dawn. A core set of genes was identified that was responsive to drought, independent of the time of day at which they were measured. Strikingly, the magnitude of the drought-induced changes for these genes varied in a time-of-day-dependent manner. An additional set of time-of-day-specific drought-responsive genes were also identified. The diurnal patterns of transcript accumulation for these genes was strongly influenced by drought stress. This study indicates that analysis of a single time point would miss suites of drought-responsive genes that are revealed through assessment of the dynamics of diurnal changes, emphasizing the value of characterizing multiple time-of-day-specific drought transcriptomes. 24 arrays total. 4 time points (midday, late day, midnight, pre-dawn). 2 water regimes (well-watered, water-limited). 3 biological replicates per treatment.
Project description:Sorghum is one of the four major C4 crops that are considered to be tolerant to environmental extremes. Sorghum shows distinct growth responses to temperature stress depending on the sensitivity of the genetic background. About half of the transcripts in sorghum exhibit diurnal rhythmic expressions emphasizing significant coordination with the environment. However, an understanding of how molecular dynamics contribute to genotype-specific stress responses in the context of the time of day is not known. We examined whether temperature stress and the time of day impact the gene expression dynamics in cold-sensitive and tolerant and heat-sensitive and tolerant sorghum genotypes. We found that time of day is highly influencing the temperature stress responses, which can be explained by the rhythmic expression of most thermo-responsive genes. This effect is more pronounced in thermo-tolerant genotypes, suggesting a stronger regulation of gene expression by the time of day and/or by the circadian clock. Genotypic differences were mostly observed on average gene expression levels, but we identified groups of genes regulated by temperature stress in a time-of-day and genotype-specific manner. These include transcriptional regulators and several members of the Ca2+-binding EF-hand protein family. We speculate that expression variation of these genes between genotypes may be responsible for contrasting sensitivities to temperature stress in tolerant vs susceptible sorghum varieties. These findings offer a new opportunity to selectively target specific genes in efforts to develop climate-resilient crops based on their time of day and genotype variation responses to temperature stress.
Project description:Episodic drought stress negatively impacts the health of long-lived trees. Understanding the genetic and molecular mechanisms that underpin response to drought stress is requisite for selecting or enhancing climate change resilience. Here we aim to establish standardized drought stress protocols for transcriptome studies in poplar trees, to determine how hybrid poplars respond to prolonged and uniform exposure to drought; to determine if the responses to moderate and more severe growth-limiting drought stresses were qualitatively or quantitatively different; and, to determine how response to drought changes throughout the day. We established hybrid poplar trees (Populus x ’Okanese’) from unrooted stem cutting with abundant soil moisture for six weeks. We then withheld water to establish three soil water contents reflecting well-watered, moderate, and severe growth-limiting drought conditions. Plants were rewatered as needed for three weeks to maintain the soil water conditions. The mild and severe drought treatments elicited distinct changes in growth and development, photosynthetic rates and global transcriptomic changes. Notably, the time of day of sampling was strongest signal in the transcriptome data and it quantitatively and qualitatively affected drought responsive changes in gene expression. These analyses emphasize the complex nature of drought regulation in long-lived trees.
Project description:RNA sequencing on the third true Arabidopsis leaves of plants exposed to mild drought stress from 12 days after stratification onwards. Samples were harvested at 4AM, 12PM and 8PM on day 14, and at 4AM on day 15.
Project description:Six months old seed grown under well-watered greenhouse conditions were used in the current study. The seedlings of the two wild emmer wheat genotypes were vernalized on a moist germination paper (Hofman Manufacturing, Inc, Jefferson, OR, USA) for three weeks in the dark at 4oC, followed by three days acclimation at 24oC. Seedlings were then transplanted into 5L pots containing a mixture of pure quartz sand and peat (4:1 v/v), supplemented with a slow release fertilizer (2 g/L, Osmocote® Standard 14-14-14, Scotts-Sierra Horticulture, Marysville, OH, USA) and by a weekly application of 100 ml/pot of 0.5X Murashigi and Skoog growth solution (Sigma Chemical Co., St Louis, MO, USA). Pots were placed in a screen-house under natural winter conditions (December to February; 5-18°C) in Haifa, Israel (Mt. Carmel; 35o01′ E, 32o45′ N; 480 m above sea level) for 10 weeks and irrigated daily by a drip irrigation system. Three weeks prior to application of terminal drought stress, the pots were transferred to a controlled environment greenhouse (22/18 oC; 12 h day/12 h night) in order to prevent rainfall during the drought experiment. Five pots per genotype served as biological replicates, plants of three pots of each genotype/treatment were used for transcriptome study whereas two additional pots were used for quantitative PCR analysis (altogether five biological replicated of were used for quantitative real time PCR). Three individual plants were grown in each pot, one plant was used for measurements of leaf relative water content (RWC) (Barrs and Weatherley 1968), whereas the other two plants were used for sampling of flag leaf tissue for RNA extraction. Terminal drought stress (D) was applied at inflorescence emergence stage (Zadoks 50-60), (Zadoks et al. 1974), after emergence of 1-2 spikes in all biological replicates of both genotypes. The time from transplanting to inflorescence emergence stage was not significantly different between genotypes (70 days in the S genotype and 72 days in the R genotype). Drought stress application initiated after irrigation with excess amount of water in order to assure that all pots start the experiment at the same soil water capacity. Drought stress was imposed by withholding water for eight days until stress symptoms (i.e. leaf rolling and wilting symptoms) were visible in plants of both genotypes. Stress symptoms were more visible in the S genotype, however, leaf relative water content (RWC), measured after eight days of drought stress was low but was not significantly different between the two genotypes (49.68%±1.48 in the R genotype and 53.34%±1.83 in the S genotype). The well-watered control (C) plants were irrigated daily by ample amount of water. Flag leaf tissues of drought-stressed plants and well-watered control plants were harvested, immediately frozen in liquid nitrogen, and stored at -80ºC for RNA extraction. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Krugman Tamar. The equivalent experiment is TA33 at PLEXdb.]