Project description:Gingival Crevicular Fluid, a plasma-derived exudate present in the gingival crevice was collected from deciduous, exfoliating and permanent teeth from 20 children (60 samples) with the aim to characterize and quantify by a mass spectrometry based top-down proteomic approach, the peptide/proteins in the fluid and verify possible variations occurring during the exfoliating process. The results obtained confirmed the presence in Gingival Crevicular Fluid of α-Defensins 1-4, Thymosin β4 and Thymosin β10, as described in previous works and revealed the presence of other interesting peptides never described before in Gingival Crevicular Fluid, such as specific fragments of α-1-antitrypsin, α-1-antichymotrypsin, Thymosin β4 and Thymosin β10 fragments, Fibrinopeptide A, Fibrinopeptide B, S100A, LVV Hemorphin-7 (hemoglobin chain β fragment), as well as some other peptides deriving from α and β subunits of hemoglobin. Statistical analysis evidenced different levels in 5 proteins/peptides in the three groups in particular with higher level in exfoliating teeth. Our study demonstrate that an in-depth analysis of a biological fluid like Gingival Crevicular Fluid, present in small amount, can provide useful information for the understanding of different biological processes like teeth eruption.
Project description:The aim of this study was to evaluate and compare the gene expression profiles of dental follicle and periodontal ligament in humans, which can possibly explain their functions of dental follicle and PDL such as eruption coordination and stress resorption. That may apply this information to clinical problem like eruption disturbance and to periodontal tissue engineering. PDL samples were obtained from permanent premolars (n=11) and dental follicle samples were obtained during extraction of supernumerary teeth (n=4). Comparative cDNA microarray analysis revealed several differences in gene expression between permanent PDL and dental follicles.
Project description:The discovery of activity-dependent neuroprotective protein (ADNP) regulated tooth eruption in mice and man, provides, for the first time, an early detection of tooth eruption, with full or almost full mouth of teeth at one year of age, as a potential biomarker for an intellectual disability (ID)/autism spectrum disorder (ASD) syndrome, toward improved translational medicine.
2017-06-29 | GSE81268 | GEO
Project description:Maturation of oral microbiome during teeth eruption: A longitudinal study
Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms. The microbial profiles of GCF and subgingival plaque were analyzed from 17 subjects with periodontal disease.
Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms.
Project description:Transcriptional profile comparison of the pleural and ascites fluids in hydropic fetuses affected with chylothorax. Two-condition experiment, pleural fluid vs. ascites fluid. Comparison of the transcriptional profile between sample collected before and after OK-432 treatment and between fetuses with and without a G404S mutation in the ITGA9 gene
Project description:The dentition of elasmobranchs (sharks, skates and rays) is uniquely productive, capable of both rapid and continuous, lifelong regeneration. Elasmobranchs represent an important group of vertebrates with a deep evolutionary history, possessing several ancient and basal characters, i.e., the continuously regenerative dentition from a specialized dental lamina. The dental lamina is an expanded component of the oral epithelia that is responsible for initiating and producing new teeth among all toothed-vertebrates. In sharks, this dynamic epithelial unit is permanent and continuous – meaning it extends to cover the entirety of each jaw (jaw-wide) and develops early during embryogenesis and retained to produce teeth for the life of the shark. It is rare for a truly embryonic vertebrate tissue to be retained for its original function for the life of the organism. The dental lamina in sharks is unique and houses teeth in a developmental series from the deepest part, where teeth are initiated, through stages of tooth development in the form of a related, family of teeth to eruption and functionality of the advanced teeth at the jaw margin. How teeth are made and regenerated is an important question in vertebrate biology; here we investigated this question in the small spotted catshark (Scyliorhinus canicula), a new model in the field of developmental biology. Specifically, we divided the shark dental lamina into stage-compartments as follows: (i) the initiation site – the successional lamina (SL); (ii) the early developing teeth (ET); (iii) the late stage developing teeth (LT); (iv) the tooth-taste junction between the superficial oral and dental epithelium at the jaw margin that separates the taste territory and the dental lamina proper (TTJ); and basi-hyal oral epithelium that is strictly non-dental and only contains taste buds (BHTB). These 5 compartments each house both a shared and unique signature of gene transcripts. This study aims to understand the transcriptomic basis of continuous tooth regeneration in the shark. In this study we combine X-ray computed tomography, classic histology, insitu hybridization, immunohistochemistry, and functional assays of novel markers, and de novo and genome guided transcriptome assemblies for each of these 5 dental lamina compartments of the hatchling (stage 34) catshark (S. canicula).
Project description:PITX1 had a significantly higher expression in the lower teeth compared to the upper teeth and this difference in PITX1 level was more evident in the molars compared to premolars, consistent with data in mouse developing teeth. These show that the differential gene expression during odontogenesis can continue to exist in mature teeth. We suggest that an in vitro study of dental pulp cells should take the differential gene profiles between the mandibular and maxillary teeth into consideration. The knowledge about gene profiling and pathways in mature teeth paves a way to explore a more precise treatment approach in regenerative dentistry.
Project description:Protease-activated receptor 2 (PAR2) is implicated in the pathogenesis of chronic inflammatory diseases, including periodontitis; it can be activated by gingipain and produced by Porphyromonas gingivalis and by neutrophil protease 3 (P3). PAR2 activation plays a relevant role in inflammatory processes by inducing the release of important inflammatory mediators associated with periodontal breakdown. The effects of periodontal treatment on PAR2 expression and its association with levels of proinflammatory mediators and activating proteases were investigated in chronic periodontitis patients. Positive staining for PAR2 was observed in gingival crevicular fluid cells and was reflective of tissue destruction. Overexpression of PAR2 was positively associated with inflammatory clinical parameters and with the levels of interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha, matrix metalloprotease 2 (MMP-2), MMP-8, hepatocyte growth factor, and vascular endothelial growth factor. Elevated levels of gingipain and P3 and decreased levels of dentilisin and the protease inhibitors secretory leukocyte protease inhibitor and elafin were also associated with PAR2 overexpression. Healthy periodontal sites from individuals with chronic periodontitis showed diminished expression of PAR2 mRNA and the PAR2 protein (P < 0.05). Furthermore, periodontal treatment resulted in decreased PAR2 expression and correlated with decreased expression of inflammatory mediators and activating proteases. We concluded that periodontal treatment resulted in decreased levels of proteases and that proinflammatory mediators are associated with decreased PAR2 expression, suggesting that PAR2 expression is influenced by the presence of periodontal infection and is not a constitutive characteristic favoring periodontal inflammation.