Project description:The multi-ligand Receptor for AGE (RAGE) contributes to atherosclerosis in apolipoprotein (ApoE) null mice in both the non-diabetic and diabetic states. Previous studies using soluble RAGE, the extracellular ligand-binding domain of RAGE, or homozygous RAGE null mice showed that blockade or deletion of RAGE resulted in marked reduction in atherosclerotic lesion area and complexity compared to control animals. In parallel, significant down-regulation of inflammatory mediators and matrix metalloproteinases was evident in ApoE null mice aortas devoid of RAGE compared to those of ApoE null RAGE-expressing mice. Although these findings suggested that RAGE triggered pro-atherogenic mechanisms via regulation of inflammatory gene expression, these studies did not reveal the broader pathways by which RAGE contributed to atherosclerosis in ApoE null mice. Therefore, we performed Affymetrix gene expression arrays on aortas of non-diabetic and diabetic ApoE null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, but, that we would be able to identify the genes likely involved in diabetes- and RAGE-dependent atherogenesis. The comparisons were as follows: 1. diabetic ApoE null relative to non-diabetic ApoE null; 2. non-diabetic ApoE null / RAGE null relative to non-diabetic ApoE null; 3. diabetic ApoE null / RAGE null relative to non-diabetic ApoE null / RAGE null; and 4. diabetic ApoE null / RAGE null relative to diabetic ApoE null aorta. Our data reveal that there is very little overlap of the genes which are differentially expressed both in the onset of diabetes in ApoE null mice, and in the effect of RAGE deletion in diabetic ApoE null mice. We next performed a Pathway-Express analysis to determine the pathways that were most associated with the onset of diabetes in ApoE null mice and the effect of RAGE gene deletion in diabetic ApoE null mice. Rigorous statistical analysis was undertaken and revealed that the transforming growth factor-beta pathway (tgf-beta) and focal adhesion pathways might be expected to play a significant role in both the mechanism by which diabetes facilitates the formation of atherosclerotic plaques in ApoE null mice, and the mechanism by which deletion of RAGE ameliorates this effect. We focused on three genes of the tgf-betafamily which were found to be up-regulated in diabetic vs. non-diabetic ApoE null aorta, and which were reduced by deletion of RAGE. These included: thrombospondin1 (Thbs1), transforming growth factor-beta (tgf-beta) and rho-associated kinase (ROCK1). Real-time quantitative polymerase chain reaction and Western blotting experiments were performed, as well as ROCK1 activity assays in mouse aorta, and validated the findings of the Affymetrix gene array. Further, confocal microscopy revealed that a principal cell type in the ApoE null aorta expressing these factors was the vascular smooth muscle cell. Our data suggest the novel finding that the observed reduction of accelerated atherosclerosis in diabetic ApoE null / RAGE null vs. diabetic ApoE null mice occurs, all or in part, through the ROCK1 branch of the TGF-betapathway. We have inferred a detailed mechanism for this process. Taken together, these data suggest that suppression of ROCK1 activity in the atherosclerosis-vulnerable vessel wall, especially in diabetes, but in non-diabetes as well, may underlie the beneficial effects of RAGE antagonism and genetic deletion in murine models. These findings highlight logical and novel targets for therapeutic intervention in cardiovascular disease and diabetes. 1. diabetic ApoE null relative to non-diabetic ApoE null; 2. non-diabetic ApoE null / RAGE null relative to non-diabetic ApoE null; 3. diabetic ApoE null / RAGE null relative to non-diabetic ApoE null / RAGE null; and 4. diabetic ApoE null / RAGE null relative to diabetic ApoE null aorta. There were 4 mice in each group initially. However there are only 3 non-diabetic ApoE null / RAGE null mice in the final experimental sample in group 3 due to a failure to generate cRNA from that sample. All samples were normalized to remove chip-dependent regularities using the RMA method. Chips and controls at each combination of genotype and disease sate were normalized together. The statistical significance of differential expression was calculated using the empirical Bayesian LIMMA (LInear Model for MicroArrays) method A cut-off B>0 was used for the statistical significance of gene expression.
Project description:The multi-ligand Receptor for AGE (RAGE) contributes to atherosclerosis in apolipoprotein (ApoE) null mice in both the non-diabetic and diabetic states. Previous studies using soluble RAGE, the extracellular ligand-binding domain of RAGE, or homozygous RAGE null mice showed that blockade or deletion of RAGE resulted in marked reduction in atherosclerotic lesion area and complexity compared to control animals. In parallel, significant down-regulation of inflammatory mediators and matrix metalloproteinases was evident in ApoE null mice aortas devoid of RAGE compared to those of ApoE null RAGE-expressing mice. Although these findings suggested that RAGE triggered pro-atherogenic mechanisms via regulation of inflammatory gene expression, these studies did not reveal the broader pathways by which RAGE contributed to atherosclerosis in ApoE null mice. Therefore, we performed Affymetrix gene expression arrays on aortas of non-diabetic and diabetic ApoE null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, but, that we would be able to identify the genes likely involved in diabetes- and RAGE-dependent atherogenesis. The comparisons were as follows: 1. diabetic ApoE null relative to non-diabetic ApoE null; 2. non-diabetic ApoE null / RAGE null relative to non-diabetic ApoE null; 3. diabetic ApoE null / RAGE null relative to non-diabetic ApoE null / RAGE null; and 4. diabetic ApoE null / RAGE null relative to diabetic ApoE null aorta. Our data reveal that there is very little overlap of the genes which are differentially expressed both in the onset of diabetes in ApoE null mice, and in the effect of RAGE deletion in diabetic ApoE null mice. We next performed a Pathway-Express analysis to determine the pathways that were most associated with the onset of diabetes in ApoE null mice and the effect of RAGE gene deletion in diabetic ApoE null mice. Rigorous statistical analysis was undertaken and revealed that the transforming growth factor-β pathway (tgf-β) and focal adhesion pathways might be expected to play a significant role in both the mechanism by which diabetes facilitates the formation of atherosclerotic plaques in ApoE null mice, and the mechanism by which deletion of RAGE ameliorates this effect. We focused on three genes of the tgf-β family which were found to be up-regulated in diabetic vs. non-diabetic ApoE null aorta, and which were reduced by deletion of RAGE. These included: thrombospondin1 (Thbs1), transforming growth factor-β2 (tgf-β2) and rho-associated kinase (ROCK1). Real-time quantitative polymerase chain reaction and Western blotting experiments were performed, as well as ROCK1 activity assays in mouse aorta, and validated the findings of the Affymetrix gene array. Further, confocal microscopy revealed that a principal cell type in the ApoE null aorta expressing these factors was the vascular smooth muscle cell. Our data suggest the novel finding that the observed reduction of accelerated atherosclerosis in diabetic ApoE null / RAGE null vs. diabetic ApoE null mice occurs, all or in part, through the ROCK1 branch of the TGF-β pathway. We have inferred a detailed mechanism for this process. Taken together, these data suggest that suppression of ROCK1 activity in the atherosclerosis-vulnerable vessel wall, especially in diabetes, but in non-diabetes as well, may underlie the beneficial effects of RAGE antagonism and genetic deletion in murine models. These findings highlight logical and novel targets for therapeutic intervention in cardiovascular disease and diabetes.
Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Keywords: wildtype vs Myc-null
Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Hearts were taken from wide type and Myc-null Mouse embryos at E13.5 under the dissecting scope. Cardiac myocyte RNA was isolated using TRIZOL®Reagent Total RNA (100 ng) was hybridized to the Sentrix® MouseRef-8 Expression BeadChip that contains probes for ~24,000 transcripts. GeneChips were scanned using the Hewlett-Packard GeneArray Scanner G2500A. The data were analyzed with Illumina Inc. BeadStudio version 1.5.0.34 and normalized by rank invariant method.
Project description:Neural crest cells are migratory progenitor cells that contribute to nearly all tissues and organs throughout the body. Their formation, migration and differentiation are regulated by a multitude of signaling pathways, that when disrupted can lead to disorders termed neurocristopathies. While work in avian and amphibian species has revealed essential factors governing the specification and induction of neural crest cells during gastrulation and neurulation in non-mammalian species, their functions do not appear to be conserved in mice, leaving major gaps in our understanding of neural crest cell formation in mammals. Here we describe Germ Cell Nuclear Factor (GCNF/Nr6a1), an orphan nuclear receptor, as a critical regulator of neural crest cell formation in mice. Gcnf null mutant mice, exhibit a major disruption of neural crest cell formation. The purpose of this experiment is to examine gene expression changes in response to Gcnf mutation in E9.0 mouse embryos.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.