Project description:This data was divided into three experiment sets: 1. A somatic study of sporadic motor neuron disease (SMND) brain samples that were compared to the blood from the same individual, normal control brains and disease control brans (Parkinson Disease patients); 2. A twin study comparing blood and other tissue samples from twins that were discordant for MND, concordant for MND and control twins and 3. A trio study of blood samples MND patients compared to their unaffected parents. Study 1: 36 sporadic motor neuron disease brain (lateral frontal cortex, Brodmann area 46), 34 matched sporadic motor neuron disease blood, 26 control brain (lateral frontal cortex, Brodmann area 46), 9 Parkinson Disease brain (disease controls, lateral frontal cortex, Brodmann area 46). Study 2 and study 3: 52 twin or trio blood, 4 twin hair, 1 twin sperm. 2 replicate twin blood and 1 replicate trio blood repeated at a different time. External control blood from Coriell GM15510 and GM10851.
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. RNA was extracted from fibroblasts grown from neurologically healthy controls (n=6) and 3 groups of patients with ALS: 1) sporadic cases (n=6); 2) cases due to mutations of SOD1 (n=4); 3) cases due to mutations of TARDBP (n=3). The three ALS groups were compared to the controls.
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. RNA was extracted from lower motor neurons obtained by laser capture microdissection from autopsy material from neurologically healthy controls (n=6) and cases of sporadic ALS (n=3) and ALS due to C9ORF72 mutations (n=3).
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. RNA was extracted from NSC34 motor neuronal cells depleted of TDP-43 by shRNA (n=4), treated with control shGFP (n=4), and treated with control shLuciferase (n=3).
Project description:Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic nature of the disease. Identifying genes and pathways altered in living patients provide new information on the diagnosis and pathogenesis of sporadic PD. We study changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls (Discovery set?) by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms and before initiating any pharmacological treatment. By applying Ranking-Principal Component Analysis, PUMA and Significance Analysis of Microarrays, gene expression profiling discriminates patients from healthy controls and identifies differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin remodeling and methylation. Candidate transcripts were validated by RT-qPCR in an independent cohort of 12 patients and controls (?Validation set). Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD suggesting epigenetics as target for therapeutic intervention. Analyzed samples include blood samples from 40 PD patients and 20 healthy controls. Of the original 60 samples, one (a control sample) did not pass the microarray hybridization quality controls and was excluded from further analyses. All results of bioinformatics analyses shown in this study refer to this set of 59 samples (reported here).
Project description:Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic nature of the disease. Identifying genes and pathways altered in living patients provide new information on the diagnosis and pathogenesis of sporadic PD. We study changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls (“Discovery set”) by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms and before initiating any pharmacological treatment. By applying Ranking-Principal Component Analysis, PUMA and Significance Analysis of Microarrays, gene expression profiling discriminates patients from healthy controls and identifies differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin remodeling and methylation. Candidate transcripts were validated by RT-qPCR in an independent cohort of 12 patients and controls (“Validation set”). Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD suggesting epigenetics as target for therapeutic intervention.
Project description:This data was divided into three experiment sets: 1. A somatic study of sporadic motor neuron disease (SMND) brain samples that were compared to the blood from the same individual, normal control brains and disease control brans (Parkinson Disease patients); 2. A twin study comparing blood and other tissue samples from twins that were discordant for MND, concordant for MND and control twins and 3. A trio study of blood samples MND patients compared to their unaffected parents.
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism.
Project description:Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism.