Project description:Silica frustules of most planktonic diatoms have many shallow holes in which the length (L) is smaller than the width (W). The present study focuses on a silica ultrastructure of setae of a planktonic diatom having deep (L/W > 1) holes. Here, we characterized microscopically patterned nanoholes on the silica walls of thick, robust, and hollow setae of a colony of Chaetoceros coarctatus. Basically, tetragonal poroid arrangements with and without a costa pattern are observed on the inner and outer surfaces, respectively, for three kinds of curving hollow setae attached to the anterior, intercalary, and posterior parts of the colony. The seta structures including specific poroid arrangements and continuity of deep nanoholes depend on the location. The deep nanoholes ∼90 nm wide are elongated from 150 to 1500 nm (L/W ∼17) with an increase in the wall thickness of the polygonal tubes of the setae. The inside poroid array, with a period of 190 nm in the extension direction of setae, is lined by parallel plates of the costae. However, the poroid arrangement on the outer surface is disordered, with several holes obstructed with increasing wall thickness of the posterior terminal setae. According to the movement of a colony in a fluid microchannel, the thick curving terminal setae is suggested to involve attitude control and mechanical protection. Using an optical simulation, the patterned deep through-holes on the intercalary setae were suggested to contribute anti-reflection of blue light in the wavelength range of 400 to 500 nm for the promotion of photosynthesis in seawater.
Project description:A new to science valvatiform hydrobiid, Myrtoessa hyas Radea, gen. n. & sp. n., from southern Greece, is described and illustrated. The new genus is a tiny gastropod thriving in a stream and is differentiated from the other known European and circum-Mediterranean valvatiform hydrobiid genera by a unique combination of the male and female genitalia features i.e. penis long, flat, blunt, with wide wrinkled proximal part and narrow distal part with a sub-terminal eversible papilla on its left side, bursa copulatrix well-developed, pyriform, fully protruding from the posterior end of the albumen gland and two seminal receptacles respectively. The new monotypic and locally endemic genus is narrowly distributed and its single known population nearby a coastal bustling village is vulnerable to anthropogenic stressors.
Project description:BackgroundHypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 μatm) and high (1,960 μatm) PCO2 at different temperatures (5°C and 10°C).ResultsThe analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation.ConclusionOur findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.