Project description:Bacterial vectors, as microscopic living 'robotic factories', can be reprogrammed into microscopic living 'robotic factories', using a top-down bioengineering approach to produce and deliver anticancer agents. Most of the current research has focused on bacterial species such as Salmonella typhimurium or Clostridium novyi. However, Escherichia coli Nissle 1917 (EcN) is another promising candidate with probiotic properties. EcN offers increased applicability for cancer treatment with the development of new molecular biology and complete genome sequencing techniques. In this review, we discuss the genetics and physical properties of EcN. We also summarize and analyse recent studies regarding tumour therapy mediated by EcN. Many challenges remain in the development of more promising strategies for combatting cancer with EcN.
Project description:Engineered microbes are rapidly being developed for the delivery of therapeutic modalities to sites of disease. Escherichia coli Nissle 1917 (EcN), a genetically tractable probiotic with a well-established human safety record, is emerging as a favored chassis. Here, we summarize the latest progress in rationally engineered variants of EcN for the treatment of infectious diseases, metabolic disorders, and inflammatory bowel diseases (IBDs) when administered orally, as well as cancers when injected directly into tumors or the systemic circulation. We also discuss emerging studies that raise potential safety concerns regarding these EcN-based strains as therapeutics due to their secretion of a genotoxic colibactin that can promote the formation of DNA double-stranded breaks in mammalian DNA.
Project description:RNA sequencing of Escherichia coli Nissle 1917 before and after HOCl treatment was perfomed to identify pathways that may be important in responding to oxidative stress caused by reachive chlorine species (RCS).
Project description:We announce the availability of the 5.023-Mbp high-quality draft assembly of the Escherichia coli strain Nissle 1917 (serovar O6:K5:H1) genome. Short genomic segments from this important probiotic strain have been available in public databases, but the full genome sequence has remained inaccessible. Thus, high-coverage, whole genome sequencing of E. coli Nissle 1917 is presented herein. Reannotation and metabolic reconstruction will enable comparative genomics analysis and model-guided predictions of genetic manipulations leading to increased production of the K5 capsular polysaccharide known as N-acetyl heparosan, a precursor to the anticoagulant pharmaceutical heparin.