Project description:The ability of Bradyrhizobium japonicum and B. elkanii strains to utilize alkane and aromatic sulfonates as sole sources of sulfur for growth was investigated. All of the strains tested were able to utilize alkane sulfonates, but not aromatic sulfonates for growth. Whole-genome transcriptional profiling was used to assess B. japonicum USDA 110 genes involved in growth on alkane sulfonates, as compared to growth on sulfate and cysteine. Two sets of genes, bll7007 to bll7011 and bll6449 to 6456 were highly expressed during growth with sulfate and sulfonates. These genes were predicted to encode alkanesulfonate monooxygenases and ABC transporter components. Reverse transcription-PCR (RT-PCR) analyses showed that these genes were organized in two operon-like structures and expressed as polycistronic messages. The sulfonate monooxygenase encoded by bll7010 (ssuD) complemented an E. coli mutant defective in utilization of sulfonates. The expression of many genes that were induced during growth on cysteine and taurine were under the control of the FixLJ-FixK2-FixK1 symbiotic nitrogen fixation cascade, indicating there is a novel linkage between sulfur metabolism and nitrogen fixation. Taken together, results of this study indicate that Bradyrhizobium sp. strains are metabolically diverse and likely use organosulfur compounds for growth and survival, and for legume nodulation and nitrogen fixation in soil systems. Three independent biological materials were prepared for sulfate or sulfonate supplemented cells. Total 12 arrays including dye swap were analyzed.
Project description:The ability of Bradyrhizobium japonicum and B. elkanii strains to utilize alkane and aromatic sulfonates as sole sources of sulfur for growth was investigated. All of the strains tested were able to utilize alkane sulfonates, but not aromatic sulfonates for growth. Whole-genome transcriptional profiling was used to assess B. japonicum USDA 110 genes involved in growth on alkane sulfonates, as compared to growth on sulfate and cysteine. Two sets of genes, bll7007 to bll7011 and bll6449 to 6456 were highly expressed during growth with sulfate and sulfonates. These genes were predicted to encode alkanesulfonate monooxygenases and ABC transporter components. Reverse transcription-PCR (RT-PCR) analyses showed that these genes were organized in two operon-like structures and expressed as polycistronic messages. The sulfonate monooxygenase encoded by bll7010 (ssuD) complemented an E. coli mutant defective in utilization of sulfonates. The expression of many genes that were induced during growth on cysteine and taurine were under the control of the FixLJ-FixK2-FixK1 symbiotic nitrogen fixation cascade, indicating there is a novel linkage between sulfur metabolism and nitrogen fixation. Taken together, results of this study indicate that Bradyrhizobium sp. strains are metabolically diverse and likely use organosulfur compounds for growth and survival, and for legume nodulation and nitrogen fixation in soil systems.
Project description:PhyR is an unusual type of response regulator consisting of a receiver domain and an extracytoplasmic function (ECF) sigma factor-like domain. It was recently described as a master regulator of general stress response in Methylobacterium extorquens. Orthologues of this regulator are present in essentially all free-living Alphaproteobacteria. In most of them, phyR is genetically closely linked to a gene encoding an ECF sigma factor. Here, we investigate the role of these two regulators in the soybean symbiont Bradyrhizobium japonicum USDA110. Using deletion mutants and phenotypic assays, we showed that PhyR and the ECF sigma factor sigma(EcfG) are involved in heat shock and desiccation resistance upon carbon starvation. Both mutants had symbiotic defects on the plant hosts Glycine max (soybean) and Vigna radiata (mungbean). They induced fewer nodules than the wild type and these nodules were smaller, less pigmented, and their specific nitrogenase activity was drastically reduced 2 or 3 weeks after inoculation. Four weeks after infection, soybean nodule development caught up to a large extent whereas most mungbean nodules remained defective even 5 weeks after infection. Remarkably, both mutants triggered aberrant nodules on the different host plants with ectopically emerging roots. Microarray analysis revealed that PhyR and sigma(EcfG) control congruent regulons suggesting both regulators are part of the same signalling cascade. This finding was further substantiated by in vitro protein-protein interaction studies which are in line with a partner-switching mechanism controlling gene regulation triggered by phosphorylation of PhyR. The large number of genes of unknown function present in the PhyR/sigma(EcfG) regulon and the conspicuous symbiotic phenotype suggest that these regulators are involved in the Bradyrhizobium-legume interaction via yet undisclosed mechanisms. Comparative analysis of the B. japonicum phyR mutant 8402, ecfG mutant 8404 mutant and the wild type during exponential growth in rich medium (PSY) and after 24 hours starvation in carbon source-free minimal medium
Project description:PhyR is an unusual type of response regulator consisting of a receiver domain and an extracytoplasmic function (ECF) sigma factor-like domain. It was recently described as a master regulator of general stress response in Methylobacterium extorquens. Orthologues of this regulator are present in essentially all free-living Alphaproteobacteria. In most of them, phyR is genetically closely linked to a gene encoding an ECF sigma factor. Here, we investigate the role of these two regulators in the soybean symbiont Bradyrhizobium japonicum USDA110. Using deletion mutants and phenotypic assays, we showed that PhyR and the ECF sigma factor sigma(EcfG) are involved in heat shock and desiccation resistance upon carbon starvation. Both mutants had symbiotic defects on the plant hosts Glycine max (soybean) and Vigna radiata (mungbean). They induced fewer nodules than the wild type and these nodules were smaller, less pigmented, and their specific nitrogenase activity was drastically reduced 2 or 3 weeks after inoculation. Four weeks after infection, soybean nodule development caught up to a large extent whereas most mungbean nodules remained defective even 5 weeks after infection. Remarkably, both mutants triggered aberrant nodules on the different host plants with ectopically emerging roots. Microarray analysis revealed that PhyR and sigma(EcfG) control congruent regulons suggesting both regulators are part of the same signalling cascade. This finding was further substantiated by in vitro protein-protein interaction studies which are in line with a partner-switching mechanism controlling gene regulation triggered by phosphorylation of PhyR. The large number of genes of unknown function present in the PhyR/sigma(EcfG) regulon and the conspicuous symbiotic phenotype suggest that these regulators are involved in the Bradyrhizobium-legume interaction via yet undisclosed mechanisms.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. Transciptomic expression profiles indicated that genes involved in carbon/nitrogen metabolism, and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. Bradyrhizobium japonicum strains were grown in the soybean rhizosphere under two different CO2 concentrations. Transcriptional profiling of B. japonicum was compared between cells grown under elevated CO2 and ambient conditions. Four biological replicates of each treatment were prepared, and four microarray slides were used for each strain.
Project description:Soybean root hair transcriptional response to their inoculation by the symbiotic bacteria B. japonicum involved in soybean nodulation. We used the first generation of an Affymetrix microarray to quantify the abundance of the transcripts from soybean root hair cells inoculated and mock-inoculated by B. japonicum. This experiment was performed on a time-course from 6 to 48 hours after inoculation.
Project description:The Bradyrhizobium japonicum NtrC regulatory protein influences gene expression in response to changes in intracellular nitrogen status. Under conditions of low nitrogen, phosphorylation of NtrC results in up-regulation of a number of genes involved in nitrogen metabolism and nitrogen acquisition. To better define the exact nature of NtrC’s influence on gene expression, a ntrC mutation was created in B. japonicum and transcriptional profiling was performed by DNA microarray analysis of both the mutant and wild type strains.
Project description:The Bradyrhizobium japonicum NtrC regulatory protein influences gene expression in response to changes in intracellular nitrogen status. Under conditions of low nitrogen, phosphorylation of NtrC results in up-regulation of a number of genes involved in nitrogen metabolism and nitrogen acquisition. To better define the exact nature of NtrC’s influence on gene expression, a ntrC mutation was created in B. japonicum and transcriptional profiling was performed by DNA microarray analysis of both the mutant and wild type strains.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that atmospheric elevated CO2 concentration indirectly influences on expression of large number of Bradyrhizobium genes through soybean roots. In addition, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency.