Project description:The goals of this study were to determine global differences in transcript expression and regulation between MM cells that are sensitive or insensitive to lovastatin-induced apoptosis. To this end, two sensitive (KMS11 and H929) and two insensitive (LP1 and SKMM1) MM cell lines treated with 20uM lovastatin or an ethanol vehicle control for 16 hours. mRNA was extracted and prepared for mRNA expression microarrays (HG-U133 Plus 2) in triplicate. Keywords: drug-response across cell-lines
Project description:The goals of this study were to determine global differences in transcript expression and regulation between MM cells that are sensitive or insensitive to lovastatin-induced apoptosis. To this end, two sensitive (KMS11 and H929) and two insensitive (LP1 and SKMM1) MM cell lines treated with 20uM lovastatin or an ethanol vehicle control for 16 hours. mRNA was extracted and prepared for mRNA expression microarrays (HG-U133 Plus 2) in triplicate. Keywords: drug-response across cell-lines Four cell-lines, each treated with lovastatin or vehicle control, with three replicates per condition
Project description:Lovastatin and other statins inhibit HMG-CoA reductase, which carries out an early step in the sterol biosynthesis pathway. Statins lower cholesterol and are widely prescribed to prevent heart disease, but like many drugs, they can interact with nutritionally acquired metabolites. To probe these interactions, we explored the effect of a diverse library of metabolites on statin effectiveness using a Saccharomyces cerevisiae model. In yeast, treatment with lovastatin results in reduced growth. We combined lovastatin with the library of metabolites and found that copper and zinc ions impaired the ability of the statin to inhibit yeast growth. Using an integrated genomic and metabolomic approach, we found that lovastatin plus metal synergistically upregulated some sterol biosynthesis genes. This altered pattern of gene expression resulted in greater flux through the sterol biosynthesis pathway and an increase in ergosterol levels. Each sterol intermediate level was correlated with expression of the upstream gene. Thus, the ergosterol biosynthetic response induced by statin is enhanced by copper and zinc. In cultured mammalian cells, these metals also rescued statin growth inhibition. Because copper and zinc impair the ability of statin to reduce sterol biosynthesis, dietary intake of these metals could have clinical relevance for statin treatment in humans.
Project description:Lovastatin and other statins inhibit HMG-CoA reductase, which carries out an early step in the sterol biosynthesis pathway. Statins lower cholesterol and are widely prescribed to prevent heart disease, but like many drugs, they can interact with nutritionally acquired metabolites. To probe these interactions, we explored the effect of a diverse library of metabolites on statin effectiveness using a Saccharomyces cerevisiae model. In yeast, treatment with lovastatin results in reduced growth. We combined lovastatin with the library of metabolites and found that copper and zinc ions impaired the ability of the statin to inhibit yeast growth. Using an integrated genomic and metabolomic approach, we found that lovastatin plus metal synergistically upregulated some sterol biosynthesis genes. This altered pattern of gene expression resulted in greater flux through the sterol biosynthesis pathway and an increase in ergosterol levels. Each sterol intermediate level was correlated with expression of the upstream gene. Thus, the ergosterol biosynthetic response induced by statin is enhanced by copper and zinc. In cultured mammalian cells, these metals also rescued statin growth inhibition. Because copper and zinc impair the ability of statin to reduce sterol biosynthesis, dietary intake of these metals could have clinical relevance for statin treatment in humans. There are 23 total samples comprising replicates of combinations of statin (5 ug/mL), CuSO4 (1mM), and ZnSO4 (2mM) treatments. There are three biological replicates. Within each biological replicate set, there are two conditions that were randomly chosen to be duplicated (i.e., technical replicates). An RNA sample consisting of a mix of RNA from all 6 experimental conditions was used as the reference.
Project description:Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with *TP53* mutations. Since *TP53* mutations occur in almost all of the ovarian high-grade serous carcinoma, we determined if statins suppressed tumor growth in animal models of ovarian cancer. Two ovarian cancer mouse models were employed. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously develop serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the anti-tumor effects of lovastatin were also investigated. Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced anti-proliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease. SKOV3 and OVCAR5 cells were treated with either 10uM Lovastatin or DMSO for 48 hours before harvested for gene expression array.
Project description:Statin-induced gene expression differences observed in LCLs may be influenced by their transformation, and thus differ from those observed in native B-cells. To assess this possibility, we prepared LCLs and purified B-cells from the same donors, and compared mRNA profiles after 24hr incubation with simvastatin (2M-BM-5M) or sham buffer. We prepared LCLs and purified B-cells from the same donors, and compared mRNA profiles after 24hr incubation with simvastatin (2M-BM-5M) or sham buffer. Genes involved in cholesterol metabolism were similarly regulated between the two cell types under both the statin and sham treated conditions, and the statin-induced changes were significantly correlated.
Project description:Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with *TP53* mutations. Since *TP53* mutations occur in almost all of the ovarian high-grade serous carcinoma, we determined if statins suppressed tumor growth in animal models of ovarian cancer. Two ovarian cancer mouse models were employed. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously develop serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the anti-tumor effects of lovastatin were also investigated. Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced anti-proliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease.
Project description:The 3-Deazaneplanocin A (DZNep), one of S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors, has shown antitumor activities in a broad range of solid tumors and acute myeloid leukemia. Here, we examined its effects on multiple myeloma (MM) cells and found that, at 500 nM, it potently inhibited growth and induced apoptosis in 2 of 8 MM cell lines. RNA from un-treated and DZNep treated cells was profiled by Affymetrix HG-U133 Plus 2.0 microarray and genes with a significant change in gene expression were determined by significance analysis of microarray (SAM) testing. ALOX5 was the most down-regulated gene (5.8-fold) in sensitive cells and was expressed at low level in resistant cells. The results were corroborated by quantitative RT-PCR. Western-blot analysis indicated ALOX5 was highly expressed only in sensitive cell line H929 and greatly decreased upon DZNep treatment. Ectopic expression of ALOX5 reduced sensitivity to DZNep in H929 cells. Furthermore, down-regulation of ALOX5 by RNA interference could also induce apoptosis in H929. Gene expression analysis on MM patient dataset indicated ALOX5 expression was significantly higher in MM patients compared to normal plasma cells. We also found that Bcl-2 was overexpressed in DZNep insensitive cells, and cotreatment with DZNep and ABT-737, a Bcl-2 family inhibitor, synergistically inhibited growth and induced apoptosis of DZNep insensitive MM cells. Taken together, this study shows one of mechanisms of the DZNep efficacy on MM correlates with its ability to down-regulate the ALOX5 levels. In addition, DZNep insensitivity might be associated with overexpression of Bcl-2, and the combination of ABT-737 and DZNep could synergistically induced apoptosis. These results suggest that DZNep may be exploited therapeutically for a subset of MM.
Project description:The 3-Deazaneplanocin A (DZNep), one of S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors, has shown antitumor activities in a broad range of solid tumors and acute myeloid leukemia. Here, we examined its effects on multiple myeloma (MM) cells and found that, at 500 nM, it potently inhibited growth and induced apoptosis in 2 of 8 MM cell lines. RNA from un-treated and DZNep treated cells was profiled by Affymetrix HG-U133 Plus 2.0 microarray and genes with a significant change in gene expression were determined by significance analysis of microarray (SAM) testing. ALOX5 was the most down-regulated gene (5.8-fold) in sensitive cells and was expressed at low level in resistant cells. The results were corroborated by quantitative RT-PCR. Western-blot analysis indicated ALOX5 was highly expressed only in sensitive cell line H929 and greatly decreased upon DZNep treatment. Ectopic expression of ALOX5 reduced sensitivity to DZNep in H929 cells. Furthermore, down-regulation of ALOX5 by RNA interference could also induce apoptosis in H929. Gene expression analysis on MM patient dataset indicated ALOX5 expression was significantly higher in MM patients compared to normal plasma cells. We also found that Bcl-2 was overexpressed in DZNep insensitive cells, and cotreatment with DZNep and ABT-737, a Bcl-2 family inhibitor, synergistically inhibited growth and induced apoptosis of DZNep insensitive MM cells. Taken together, this study shows one of mechanisms of the DZNep efficacy on MM correlates with its ability to down-regulate the ALOX5 levels. In addition, DZNep insensitivity might be associated with overexpression of Bcl-2, and the combination of ABT-737 and DZNep could synergistically induced apoptosis. These results suggest that DZNep may be exploited therapeutically for a subset of MM. Cells were treated with 0.5 μmol/L DZNep for 48 h. Total RNA was extracted by using the Qiagen RNeasy Mini kit (Germany). Gene expression was performed using the GeneChip® Human Genome U133A Array (Affymetrix) following the manufacturer’s instructions. Data analysis was performed using GeneSpring software from Agilent Technologies.
Project description:The balance between proliferation and apoptosis is essential to sustain homeostasis in T-cells. In addition to the well-documented transcriptional regulation, post-transcriptional gene regulatory networks have prominent effects on the regulation of T cell apoptosis. MicroRNAs (miRNAs) are non-coding small RNAs of about 17-25 nucleotides in length, which negatively regulate gene expression by translational inhibition or mRNA degradation. Although the comparison of healthy and cancerous tissues identified a number of miRNAs whose targets include apoptotic/anti-apoptotic genes, a more comprehensive screening is yet to be performed. We induced apoptosis with camptothecin, an inhibitor of DNA topoisomerase I, sorted the drug-sensitive pre-apoptotic Jurkat cells from the drug-insensitive ones, and deep-sequenced small RNAs in control, drug-sensitive and insensitive cells. Our results showed that drug-sensitive and –insensitive cells possess unique small RNA profiles, especially in miRNA and tRNA-derived ones. Additionally, they inversely express certain miRNAs such as miR-128, 720, and 425 compared to the untreated control cells.