Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Differences in the selective pressures experienced by males and females are believed to be ubiquitous in dioecious organisms and are expected to result in the evolution of sexually antagonistic alleles, thereby driving the evolution of sexual dimorphism. Negative genetic correlation for fitness between the sexes has been documented, however, the identity, number and location of loci causing this relationship are unknown. Here we show that a large proportion of Drosophila melanogaster transcripts are associated with the interaction between genomic haplotype and gender and that at least 8% of loci in the fly genome are currently evolving under sexually antagonistic selection.
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning.
Project description:Differences in the selective pressures experienced by males and females are believed to be ubiquitous in dioecious organisms and are expected to result in the evolution of sexually antagonistic alleles, thereby driving the evolution of sexual dimorphism. Negative genetic correlation for fitness between the sexes has been documented, however, the identity, number and location of loci causing this relationship are unknown. Here we show that a large proportion of Drosophila melanogaster transcripts are associated with the interaction between genomic haplotype and gender and that at least 8% of loci in the fly genome are currently evolving under sexually antagonistic selection. We measured gene expression of adult males and females of Drosophila melanogaster from 15 hemiclone lines, showing either high-male/low-female fitness, high-female/lowmale fitness or average fitness in both sexes. Data from four replicates for each sex/line are presented, giving a total of 120 arrays.