Project description:This analysis compare gene expression between 4 day old sugar fed female and male Aedes aegypti mosquitoes. Keywords: Aedes aegypti sex specific expression
Project description:Investigation of whole genome gene expression level changes of testes in the meiotic drive system in aedes aegypti during spermatogenesis compared to non drive strain. The meiotic drive system in Aedes aegypti causes the female determining chromosome to fragment during spermatogenesis. A six chip study using total RNA from three separately extracted non driving strain testes of Aedes aegypti and three separately extracted meiotic drive strain testes of Aedes aegypti.
Project description:Investigation of whole genome gene expression level changes of testes in the meiotic drive system in aedes aegypti during spermatogenesis compared to non drive strain. The meiotic drive system in Aedes aegypti causes the female determining chromosome to fragment during spermatogenesis.
Project description:This analysis defines the adult female and developmental specific transcriptomes of Aedes aegypti. Keywords: Aedews aegypti, development, gene expression
Project description:We report the RNA-seq based analyses of the transcriptional changes in the Aedes aegypti transcriptome 5 hours after blood feeding. Comparison of the transcriptome of Aedes aegypti females at two physiological conditions and one time point.
Project description:Aedes aegypti (L.) is the primary vector of many emerging arboviruses. Insecticide resistance among mosquito populations is a consequence of the application of insecticides for mosquito control. We used RNA-sequencing to compare transcriptomes between permethrin resistant and susceptible strains of Florida Ae. aegypti in response to Zika virus infection. A total of 2,459 transcripts were expressed at significantly different levels between resistant and susceptible Ae. aegypti. Gene ontology analysis placed these genes into 7 categories of biological processes. The 863 transcripts were expressed at significantly different levels between two strains (up/down regulated) more than 2-fold. Quantitative real-time PCR analysis validated Zika-infected response, and suggested a highly overexpressed P450, with AAEL014617 and AAEL006798 as potential candidates for the molecular mechanism of permethrin resistance in Ae. aegypti. Our findings indicated that most detoxification enzymes and immune system enzymes altered their gene expression between the two strains of Ae. aegypti in response to Zika virus infection. Understanding the interactions of arboviruses with resistant mosquito vectors at the molecular level allows for the possible development of new approaches in mitigating arbovirus transmission. This information sheds light on Zika-induced changes in the insecticide resistance of Ae. aegypti with implications for mosquito control strategies.