Project description:Genome editing was conducted on a t(3;8) K562 model to investigate the effects of deleting different modules or CTCF binding sites within the MYC super-enhancer. To check mutations after targeting with CRISPR-Cas9 we performed amplicon sequencing using the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The first PCR was performed using Q5 polymerase (NEB), the second nested PCR with KAPA HiFi HotStart Ready mix (Roche). Samples were sequenced paired-end (2x 250bp) on a MiSeq (Illumina).
Project description:Genetic heterogeneity can provide tumors with opportunities for therapy evasion, however the degree of genetic heterogeneity within metastatic melanomas has not been thoroughly investigated. We therefore isolated DNA from different regions of formalin fixed paraffin embedded metastatic melanoma tissue samples and subjected them to amplicon sequencing-based profiling of mutations in a panel of well known cancer genes using the Ion Ampliseq Cancer Panel.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp).
Project description:Following a CRISPR enhancer scan covering the GATA2 super-enhancer region, the top sgRNAs were selected for further inspection. MUTZ3 cells were thus treated with the selected sgRNAs and the region of interested was subjected to amplicons sequencing (amplicon-seq). To that end, we used the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The same experiment was conducted in K562 cells, which do not harbor an inv(3)/t(3;3), to investigate the role of MYB in this enhancer in other leukemia settings
Project description:DNA methylation at a gene promoter region has the potential to regulate gene transcription. Their patterns are often complex with the region showing multiple allelic patterns in a sample. This complexity is commonly obscured when DNA methylation data is summarised as an average percentage value for each CpG site (or aggregated across CpG sites). The methylation state at adjacent CpG sites is therefore lost when data is summarised this way. Methylation patterns can only be characterised by clonal analysis. Deep sequencing provides the ability to investigate clonal DNA methylation patterns in unprecedented detail and scale, enabling the proper characterisation of the heterogeneity of methylation patterns. However, the sheer amount of sequencing data requires new synoptic approaches to visualise the distribution of allelic patterns. We have developed an analysis and visualisation software tool "Methpat", that extracts and displays clonal DNA methylation patterns from massively parallel sequencing data aligned using Bismark. We have performed multiplex bisulfite amplicon sequencing on a range of CpG island targets across a panel of human cell lines and primary tissues. Using Methpat, we demonstrate clonal diversity of epialleles analysed at specific gene promoter regions. We also describe the existence of DNA methylation within the mitochondrial genome. Multiplex bisulfite PCR and Next Generation sequencing of 35 samples