Project description:The aim of this study is to phenotype a collection of 27 S. cerevisiae commercial wine strains growing within temperatures (4-45ºC) in both minimal media (SD) and synthetic must (SM) and, taking into account µmax value, to select two strains with divergent phenotype in their capacity to grow at low temperature. To confirm this differential phenotype, we design a competition between both strains during wine fermentations. As expected, at low temperature fermentation, the strain showing a good performance out-competes to the strain growing badly in cold. Finally we aimed to decipher the molecular basis underlying this divergent phenotype by analyzing the genomic, proteomic and transcriptomic differences between both strains at low temperature (15ºC) and optimum temperature (28ºC).
Project description:Saccharomyces cerevisiae’s requirement of reduced sulfur to synthesise methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. S. cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and depends as well on the SO2 concentration, often added to the grape must. Applying a Bulk Segregant Analysis to a 96 strain-progeny derived from two strains with different ability to produce H2S, and comparing the allelic frequencies along the genome of pools of segregants producing opposite H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes: ZWF1, ZRT2, SNR2 and YLR125W, able to impact H2S formation, involved in functions and pathways until now not associated with sulfur metabolism. This data points that redox status and zinc homeostasis are linked to H2S formation in wine fermentation conditions and provides new insights into the regulation of H2S production during wine fermentation, giving a new vision of the interplay between the sulfur assimilation pathway and cell metabolism. This archive contains the transcriptome data of the result of allelic swp for three genes : ZWF1, ZRT2, YLR125w under fermentation.
Project description:By an evolutionary approach based on long-term culture on gluconate as the sole carbon source, a Saccharomyces cerevisiae wine strains with enhanced flux through the pentose phosphate (PP) pathway were obtained. One of these evolved strains, ECA5, exhibited several novel properties with great potential for wine making, including a higher than wild-type fermentation rate and altered production of acetate and aroma compounds. To describe the mechanisms underlying this complex phenotype, we performed a comparative analysis of transcriptomic profiles between ECA5 and its ancestral strain, EC1118, under low nitrogen, wine fermentation conditions.
Project description:In wine fermentation, the blending of non-Saccharomyces yeast with Saccharomyces cerevisiae to improve the complexity of wine has become common practice, but data regarding the impact on yeast physiology and on genetic and metabolic regulation remain limited. Here we describe a transcriptomic analysis of single species and mixed species fermentations.
Project description:We used genome-wide expression analyses to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty percent of the yeast genome significantly changed expression levels to mediate long-term adaptation to an environment in which ethanol is both a stressor and a carbon source. Within this set, we identify a group of 223 genes, designated as the Fermentation Stress Response (FSR), that are dramatically and permanently induced; FSR genes exhibited changes ranging from four-to eighty-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, was responsible for entry of yeast cells into stationary phase. Ethanol seems to regulate yeast metabolism through hitherto undiscovered regulatory networks during wine fermentation. Keywords: time course, stress response, fermentation
Project description:Yeast mannoproteins contribute to several aspects of wine quality by protecting wine against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The selection of a yeast strain simultaneously overproducing mannoproteins and showing good fermentative characteristics is a difficult task. In this work, a Saccharomyces cerevisiae x Saccharomyces cerevisiae hybrid bearing the two oenologically relevant features was constructed and a reduction in the amount of bentonite necessary for wine stabilization was observed for wines fermented with the generated strain. Additionally, different copy numbers of some genes probably related with these physiological features were detected in this hybrid. Hybrid share with parental Sc1 similar copy number of genes SPR1, SWP1, MNN10 and YPS7 related to cell wall integrity and with parental Sc2 similar copy number of some glycolytic genes as GPM1 and HXK1 as well as genes involved in hexose transport as HXT9, HXT11 and HXT12. This work demonstrates that artificial hybridization and stabilization in winemaking conditions constitute an effective approach to obtain yeast strains with desirable physiological features as mannoprotein overproducing capacity and improved fermentation performance, characteristics genetically depending on the coordinated expression of a multitude of different genes. In this work, genetically stable mannoprotein overproducing Saccharomyces cerevisiae strains simultaneously showing excellent fermentation capacities were obtained by hybridization methods giving rise to non-GMO strains. The potential relationship between the copy number of specific genes and the improved features was also evaluated by means of aCGH analysis of parental and hybrid strains.
Project description:The aim of this study is to phenotype a collection of 27 S. cerevisiae commercial wine strains growing within temperatures (4-45ºC) in both minimal media (SD) and synthetic must (SM) and, taking into account µmax value, to select two strains with divergent phenotype in their capacity to grow at low temperature. To confirm this differential phenotype, we design a competition between both strains during wine fermentations. As expected, at low temperature fermentation, the strain showing a good performance out-competes to the strain growing badly in cold. Finally we aimed to decipher the molecular basis underlying this divergent phenotype by analyzing the genomic, proteomic and transcriptomic differences between both strains at low temperature (15ºC) and optimum temperature (28ºC). Two Saccharomyces cerevisiae strains with divergent phenotype in their capacity to grow and ferment at low temperature were analyzed (P5 strain as a candidate with a good performance in fermentations at low temperature (15ºC) and P24 as a candidate with a worse behavior at low temperature). All experiments were performed using triplicates arrays, and Cy5-dCTP and Cy3-dCTP dye-swap assays were performed to reduce dye-specific bias.
Project description:Goal was to identify yeast genes whose expression changed as a function of the presence/absence of lipid nutrients during fermentation of two S. cerevisiae wine strains characterized by a different fermentative behaviour.