Project description:Bacteriophage – host dynamics and interactions are important for microbial community composition and ecosystem function. Nonetheless, empirical evidence in engineered environment is scarce. Here, we examined phage and prokaryotic community composition of four anaerobic digestors in full-scale wastewater treatment plants (WWTPs) across China. Despite relatively stable process performance in biogas production, both phage and prokaryotic groups fluctuated monthly over a year of study period. Nonetheless, there were significant correlations in their α- and β-diversities between phage and prokaryotes. Phages explained 40.6% of total prokaryotic community composition, much higher than the explainable power by abiotic factors (14.5%). Consequently, phages were significantly (P<0.010) linked to parameters related to process performance including biogas production and volatile solid concentrations. Association network analyses showed that phage-prokaryote pairs were deeply rooted, and two network modules were exclusively comprised of phages, suggesting a possibility of co-infection. Those results collectively demonstrate phages as a major biotic factor in controlling bacterial composition. Therefore, phages may play a larger role in shaping prokaryotic dynamics and process performance of WWTPs than currently appreciated, enabling reliable prediction of microbial communities across time and space.
2016-12-29 | GSE92978 | GEO
Project description:Functional Role of Endophytic Fungi inside Coralloid Roots of Cycads
Project description:Transcriptomic profiles revealed that the common and unique different expression genes were identified in lateral leaflet and terminal leaflet, using petiole as a control.What's more, transcriptomic analysis was performed to compare the difference of a natural mutant with pentafoliate defects and wild type.
2021-09-09 | GSE180915 | GEO
Project description:Characterization of endophytic fungi
Project description:tRNA modifications help maintain tRNA structure and facilitate stress responses. Found in all three kingdoms of life, m1A tRNA modification occurs in the T loop of many tRNAs and stabilizes tertiary tRNA structure and impacts translation. M1A in T loop is known to be reversible by three mammalian demethylase enzymes, which bypasses the need of turning over the tRNA molecule to adjust their m1A levels in cells. However, no prokaryotic tRNA demethylase enzyme has been identified. Using Streptomyces venezuelae as a model organism, we confirmed the presence and quantitative m1A tRNA signatures using mass spectrometry and high throughput tRNA sequencing. We identified two RNA demethylases that can remove m1A in tRNA and confirmed the activity of a previously annotated tRNA m1A writer. Using single gene knockouts of these erasers and the m1A writer, we subjected these strains to stress conditions and found dynamic changes to m1A levels in many tRNAs. Phenotypic characterization highlighted changes to their growth and altered antibiotic production. Our identification of the first prokaryotic tRNA demethylase enzyme paves the way for investigating new mechanisms in global translational regulation in bacteria.