Project description:A major reservoir for spread of the emerging pathogen Acinetobacter baumannii is hopsital surfaces, where bacteria persist in a desiccated state. To identify gene products influencing desiccation survival, a transposon sequencing (Tn-seq) screen was performed. Using this approach, we identified genes both positively and negatively impacting the desiccation tolerance of A. baumannii.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The bacterial pathogen, Acinetobacter baumannii, is a leading cause of drug-resistant infections. Here, we investigated the potential of developing nanobodies that specifically recognize A. baumannii over other Gram-negative bacteria. Through generation and panning of a synthetic nanobody library, we identified several potential lead candidates. We demonstrate how incorporation of next generation sequencing analysis can aid in selection of lead candidates for further characterization. Using monoclonal phage display, we validated the binding of several lead nanobodies to A. baumannii. Subsequent purification and biochemical characterization revealed one particularly robust nanobody that broadly and specifically bound A. baumannii compared to other common drug resistant pathogens. These findings support the potentially for nanobodies to selectively target A. baumannii and the identification of lead candidates for possible future diagnostic and therapeutic development.
Project description:YerA41 is a myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified such way that it is an unsuitable template for PCR amplification and sequencing. To determine the YerA41 genome sequence we isolated RNA from phage-infected Y. ruckeri cells at different time points post-infection, and sequenced it. The host-genome specific reads were substracted and de novo assembly was performed on the unaligned reads.
Project description:The increasing rate of antibiotic-resistant bacteria has become a serious health threat. Thus, it is important to discover, characterize, and optimize new molecules to overcome infections caused by these bacteria. It is known that Acinetobacter baumannii has a high capacity to avoid antibacterial drugs. Consequently, these bacteria have emerged as one of responsible for hospital and community-acquired infections. However, how this pathogen infects and survives inside the host cell is unknown. Here we analyze the time-resolved transcriptional profile changes on human epithelial HeLa cells after A. baumannii. Our results show how A.baumannii can survive in host cells and starts replication at 4 hours post infection. We sequenced RNA to obtain a set of differentially expressed gen (DEGs) used for a Gene Ontology (GO) and KEGG pathway analysis. The results show us how host bacteria is altering the host cells environment for their own benefit. We also determine chromosomal regions affected by our set of genes. Furthermore, we obtain protein-protein networks that reveal highly interacted proteins. The combination of these results will pave the way to discover new antimicrobial candidates for multidrug-resistant bacteria.
Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:Acinetobacter baumannii is an ESKAPE pathogen that rapidly develops resistance to antibiotics and persists for extended periods in the host or on abiotic surfaces. Survival in environmental stress such as phosphate scarcity, represents a clinically significant challenge for nosocomial pathogens. In the face of phosphate starvation, certain bacteria encode adaptive strategies, including the substitution of glycerophospholipids with phosphorus-free lipids. In bacteria, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin are conserved glycerophospholipids that form lipid bilayers. Here, we demonstrate that in response to phosphate limitation, conserved regulatory mechanisms induce aminolipid production in A. baumannii. Specifically, phosphate limitation induces formation of three lipids, including amine-containing ornithine and lysine aminolipids. We show that phospahte limitation induced transcription of the olsB gene. Mutations that inactivate aminolipid biosynthesis exhibit fitness defects relative to wild type in colistin growth and killing assays.