Project description:Ovarian cancer is the most lethal gynecologic cancer. High-grade serous ovarian carcinoma (HGSOC) is the most common histologic subtype, accounting for three quarters of ovarian cancer. To clarify the changes of gene expression in serous ovarian cancer, we performed lncRNA and mRNA microarrays to identify differentially expressed lncRNAs and mRNAs in High-grade and Low-grade serous ovarian carcinoma compared with Normal fallopian tube.
Project description:Comparative genomic hybridization analysis on advanced stage high-grade serous ovarian cancer. CGH was performed on 42 DNA isolated from microdissected advanced stage high-grade serous ovarian cancer.
Project description:High-grade serous ovarian cancer is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. To provide a better understanding of the molecular mechanisms involved in the pathogenesis of these cancers and to develop a risk classification system, we conducted profiling of the copy number alterations present in these tumors. Thirty patients who were diagnosed as high-grade serous ovarian cancer were recruited in this study. Affymetrix SNP array were performed according to the manufacturer's directions on DNA extracted from high-grade serous ovarian cancer tissues or peripheral blood samples. The Japanese Serous Ovarian Cancer Study Group
Project description:Introduction: Serous ovarian cancer is the leading cause of gynecological cancers, with a 5-year survival rate below 45% due in part to the nonspecific symptoms and lack of accurate screening for early detection. In comparison, patients diagnosed at an early stage have a five-year survival rate of 92%, demonstrating the urgent need for biomarkers for the early detection of disease. Serum from patients with serous ovarian cancer contain antibodies to tumor antigens that are potential biomarkers for early detection. The purpose of this study is to identify a panel of novel serum autoantibody (AAb) biomarkers for the early diagnosis of serous ovarian cancer. Methods: To detect AAb we probed high-density programmable protein microarrays (NAPPA) containing 10,247 antigens with sera from patients with serous ovarian cancer (n = 30 cases/ 30 healthy controls) and measured bound IgG. We identified 735 promising tumor antigens using cutoff values of 10% sensitivity at 95% specificity and K-value>0.8, as well as visual analysis and evaluated these with an independent set of serous ovarian cancer sera (n = 30 cases/ 30 benign disease controls/ 30 heathy controls). Thirty-nine potential tumor autoantigens were identified with sensitivities ranging from 3 to 39.7% sensitivity at 95% specificity and were retested using an orthogonal programmable ELISA assay. A total of 13 potential tumor antigens were identified for further validation using an independent ovarian cancer sera set (n = 44 cases/ 34 healthy controls). Sensitivities at 95% specificity were calculated and a serous ovarian cancer classifier was constructed. In addition, we evaluated a longitudinal study using blinded serous pre-diagnostic ovarian cancer sera (n = 9 cases/ 90 controls) to examine the value of three (CTAG1, CTAG2, and p53) of these AAb in comparison to CA 125. Results: We identified 11-AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) that distinguished serous ovarian cancer cases from healthy controls with a combined 45% sensitivity at 100% specificity. In our longitudinal analysis, p53- and CTAG-AAb were detected up to 9 months prior to ovarian cancer diagnosis and increased with CA 125 levels. Conclusion: These are potential circulating biomarkers for the early detection of serous ovarian cancer, and warrant confirmation in larger clinical cohorts. In addition, p53- and CTAG1/2-AAb are detected in a subset of women with ovarian cancer up to 9 months prior to clinical diagnosis. Their utility as a biomarker for early detection, beyond CA 125, warrant further investigation.
Project description:Introduction: Serous ovarian cancer is the leading cause of gynecological cancers, with a 5-year survival rate below 45% due in part to the nonspecific symptoms and lack of accurate screening for early detection. In comparison, patients diagnosed at an early stage have a five-year survival rate of 92%, demonstrating the urgent need for biomarkers for the early detection of disease. Serum from patients with serous ovarian cancer contain antibodies to tumor antigens that are potential biomarkers for early detection. The purpose of this study is to identify a panel of novel serum autoantibody (AAb) biomarkers for the early diagnosis of serous ovarian cancer. Methods: To detect AAb we probed high-density programmable protein microarrays (NAPPA) containing 10,247 antigens with sera from patients with serous ovarian cancer (n = 30 cases/ 30 healthy controls) and measured bound IgG. We identified 735 promising tumor antigens using cutoff values of 10% sensitivity at 95% specificity and K-value>0.8, as well as visual analysis and evaluated these with an independent set of serous ovarian cancer sera (n = 30 cases/ 30 benign disease controls/ 30 heathy controls). Thirty-nine potential tumor autoantigens were identified with sensitivities ranging from 3 to 39.7% sensitivity at 95% specificity and were retested using an orthogonal programmable ELISA assay. A total of 13 potential tumor antigens were identified for further validation using an independent ovarian cancer sera set (n = 44 cases/ 34 healthy controls). Sensitivities at 95% specificity were calculated and a serous ovarian cancer classifier was constructed. In addition, we evaluated a longitudinal study using blinded serous pre-diagnostic ovarian cancer sera (n = 9 cases/ 90 controls) to examine the value of three (CTAG1, CTAG2, and p53) of these AAb in comparison to CA 125. Results: We identified 11-AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) that distinguished serous ovarian cancer cases from healthy controls with a combined 45% sensitivity at 100% specificity. In our longitudinal analysis, p53- and CTAG-AAb were detected up to 9 months prior to ovarian cancer diagnosis and increased with CA 125 levels. Conclusion: These are potential circulating biomarkers for the early detection of serous ovarian cancer, and warrant confirmation in larger clinical cohorts. In addition, p53- and CTAG1/2-AAb are detected in a subset of women with ovarian cancer up to 9 months prior to clinical diagnosis. Their utility as a biomarker for early detection, beyond CA 125, warrant further investigation.
Project description:Introduction: Serous ovarian cancer is the leading cause of gynecological cancers, with a 5-year survival rate below 45% due in part to the nonspecific symptoms and lack of accurate screening for early detection. In comparison, patients diagnosed at an early stage have a five-year survival rate of 92%, demonstrating the urgent need for biomarkers for the early detection of disease. Serum from patients with serous ovarian cancer contain antibodies to tumor antigens that are potential biomarkers for early detection. The purpose of this study is to identify a panel of novel serum autoantibody (AAb) biomarkers for the early diagnosis of serous ovarian cancer. Methods: To detect AAb we probed high-density programmable protein microarrays (NAPPA) containing 10,247 antigens with sera from patients with serous ovarian cancer (n = 30 cases/ 30 healthy controls) and measured bound IgG. We identified 735 promising tumor antigens using cutoff values of 10% sensitivity at 95% specificity and K-value>0.8, as well as visual analysis and evaluated these with an independent set of serous ovarian cancer sera (n = 30 cases/ 30 benign disease controls/ 30 heathy controls). Thirty-nine potential tumor autoantigens were identified with sensitivities ranging from 3 to 39.7% sensitivity at 95% specificity and were retested using an orthogonal programmable ELISA assay. A total of 13 potential tumor antigens were identified for further validation using an independent ovarian cancer sera set (n = 44 cases/ 34 healthy controls). Sensitivities at 95% specificity were calculated and a serous ovarian cancer classifier was constructed. In addition, we evaluated a longitudinal study using blinded serous pre-diagnostic ovarian cancer sera (n = 9 cases/ 90 controls) to examine the value of three (CTAG1, CTAG2, and p53) of these AAb in comparison to CA 125. Results: We identified 11-AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) that distinguished serous ovarian cancer cases from healthy controls with a combined 45% sensitivity at 100% specificity. In our longitudinal analysis, p53- and CTAG-AAb were detected up to 9 months prior to ovarian cancer diagnosis and increased with CA 125 levels. Conclusion: These are potential circulating biomarkers for the early detection of serous ovarian cancer, and warrant confirmation in larger clinical cohorts. In addition, p53- and CTAG1/2-AAb are detected in a subset of women with ovarian cancer up to 9 months prior to clinical diagnosis. Their utility as a biomarker for early detection, beyond CA 125, warrant further investigation.
Project description:Epithelial ovarian cancer is morphologically and clinically heterogeneous. Transcriptional profiling has revealed molecular subtypes (referred to as M-bM-^@M-^\C-signaturesM-bM-^@M-^]) that correlate to biological as well as clinical features. We aimed to determine gene expression differences between malignant, benign and borderline serous ovarian tumors, and to investigate similarities to the intrinsic molecular subtypes of breast cancer. Global gene expression profiling was performed using Illumina's HT12 Bead Arrays and applied to 59 fresh-frozen ovarian tumors. SAM analysis revealed enrichment of cell cycel processes among the malignant tumors, in line with malignant tumors being highly proliferative. The borderline tumors were split between the malignant and benign tumor clusters, indicating that borderline tumors have both malignant and benign features. Furthermore, nearest centroid classification was performed applying previously published gene profiles for the ovarian cancer C-signatures and the intrinsic breast cancer subtypes, respectively, and showed significant correlations between the malignant serous tumors and the highly aggressive C1, C2 and C4 ovarian cancer signatures, and the basal-like breast cancer subtype. The benign and borderline serous tumors together were significantly correlated to the normal-like breast cancer subtype and the ovarian cancer C3 signature. The borderline tumors, on the other hand, correlated significantly to the Luminal A breast cancer subtype. These findings remained when analyzed in a large, independent dataset. The data in this study link the transcriptional profiles of serous ovarian cancer to the intrinsic molecular subtypes of breast cancer, in line with the shared clinical and molecular features between high-grade serous ovarian cancer and basal-like breast cancer, including an aggressive phenotype, frequent TP53 mutations and a high degree of genomic instability, and suggest that biomarkers and targeted therapies may overlap between these subsets of ovarian and breast cancers. Finally, the link between benign and borderline ovarian cancer and luminal breast cancer may indicate endocrine responsiveness in a subset of ovarian cancers. Total RNA obtained from serous ovarian adenocarcinomas, adenomas and borderline tumors. Gene expression profiling using Illumina's HT12 v4 bead arrays. Application of ovarian cancer molecular subtypes and intrinsic breast cancer subtypes using nearest centroid classification. KRAS and BRAF mutation analyses in the malignant and borderline tumors.