Project description:Spinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalization. To understand the molecular mechanism behind this phenomenon we examined the transcriptional response of the motor neurons after spinal cord injury. We used a rat tail injury model where a complete transection of the caudal (S2) rat spinal cord leads to an immidate flaccid paralysis of the tail and a subsequent appearence of spasticity 2-3 weeks post injury that develops into strong spasticity after 2 months. Gene expression changes were studied in motor neurons 21 and 60 days after complete spinal transection where the tail exhibits clear signs of spasticity. Tail MNs were retorgradely labelled with flourogold injected into the muscle and intra peritoneally. 5-7 days after tracer injections the spinal cord was dissected out, snab frozen in liquid nitrogen, sliced in 10 um thick slices and fluorescent motor neurons were laser dissected into a collector tube to a total of ca. 50-200 cells pr sample. RNA was then extracted, two round amplified and hybridized to Affymetrix rat 230 2.0 arays. 27 samples were hybridized onto chips, 8 Spi-21, 8 Spi-60, 6 ShamC-21 and 5 ShamC-60.
Project description:Spinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearance of plateau potentials in motor neurons and the development of spasticity after spinalization. To understand the molecular mechanism behind this phenomena we examined the transcriptional response of the motor neurons after spinal cord injury as it progress over time. We used a rat tail injury model where a complete transection of the caudal (S2) rat spinal cord leads to an immediate flaccid paralysis of the tail and a subsequent appearance of spasticity 2-3 weeks post injury that develops into strong spasticity after 2 months. Gene expression changes were studied in motor neurones 0, 2, 7, 21 and 60 days after complete spinal transection. Tail MNs were retrogradely labelled with Fluoro-Gold injected into the muscle and intra peritoneally. 5-7 days after tracer injections the spinal cord was dissected out, snap-frozen in liquid nitrogen, sliced in 10 um thick slices and fluorescent motor neurons were laser dissected into a collector tube to a total of ca. 50-200 cells pr sample. RNA was then extracted, two round amplified and hybridized to Affymetrix rat 230 2.0 arays. 31 samples were hybridized onto chips, 4 Spi-0 (Control), 6 Spi-2, 5 Spi-7, 8 Spi-21 and 8 Spi-60.
Project description:Spinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalization. To understand the molecular mechanism behind this phenomenon we examined the transcriptional response of the motor neurons after spinal cord injury. We used a rat tail injury model where a complete transection of the caudal (S2) rat spinal cord leads to an immidate flaccid paralysis of the tail and a subsequent appearence of spasticity 2-3 weeks post injury that develops into strong spasticity after 2 months. Gene expression changes were studied in motor neurons 21 and 60 days after complete spinal transection where the tail exhibits clear signs of spasticity.
Project description:Spinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalizaion. To understand the moleclar mechanism behind this pheneomona we examined the transcriptional response of the motor neurons after spinal cord injury as it progress over time. We used a rat tail injury model where a complete transection of the caudal (S2) rat spinal cord leads to an immidate flaccid paralysis of the tail and a subsequent appearence of spasticity 2-3 weeks post injury that develops into strong spasticity after 2 months. Gene expression changes were studied in motor neurones 0, 2, 7, 21 and 60 days after comlete spinal transection.
Project description:The goal of this study is to find skate pectoral fin motor neuron markers. Total RNA was extracted from manually sorted pectoral fin MNs, which were retrogradely labeled and tail spinal cord cells. By comparing RNA expression profiles of pectoral fin MNs and tail spinal cord neurons, we could identity general MN, MN columnar, and subset MN pool markers for fin MNs.
Project description:We compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords. The purpose of this comparison is to assess the extent of molecular similarities between in vitro differentiated MNs and in vivo fetal or adult spinal cord MNs. Data for adult spinal cord MNs are published from other studies: GSE3526, GSE19332, GSE20589, and GSE40438. Human induced pluripotent stem cells, pluripotent stem cell derived motor neurons, and fetal spinal cords for RNA extraction and hybridization on Affymetrix arrays.
Project description:We compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords. The purpose of this comparison is to assess the extent of molecular similarities between in vitro differentiated MNs and in vivo fetal or adult spinal cord MNs. Data for adult spinal cord MNs are published from other studies: GSE3526, GSE19332, GSE20589, and GSE40438.