Project description:Transcriptome analyses of organ transplants have until now usually focused on whole tissue samples containing activation profiles from different cell populations. Here, we enriched endothelial cells from rat cardiac allografts and isografts, establishing their activation profile at baseline and on day 2, 3 and 4 after transplantation. Modulated transcripts were assigned to three categories based on their regulation profile in allografts and isografts. Categories A and B contained the majority of transcripts and showed similar regulation in both graft types, appearing to represent responses to surgical trauma. By contrast, category C contained transcripts that were partly allograft-specific and to a large extent associated with interferon-ï§-responsiveness. Several transcripts were verified by immunohistochemical analysis of graft lesions, among them the matricellular protein periostin which was one of the most highly upregulated transcripts but has not been associated with transplantation previously. In conclusion, the majority of the differentially expressed genes in graft endothelial cells are affected by the transplantation procedure whereas relatively few are associated with allograft rejection. Endothelial cells were enriched from control/non-transplanted hearts and from allografts (DA to Lewis) and isografts (Lewis to Lewis) harvested at day 2, 3 and 4 after transplantation. Three biological replicates from each time point and graft type were analyzed (a total of 24 arrays). Leukocytes were enriched from allografts at day 2 (n=1), day 3 (n=2) and day 4 (n=1) after transplantation.
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.
Project description:Analysis of LBNF1 rat testes from controls, containing both somatic and all germ cell types and from irradiated rats in which all cells germ cells except type A spermatgogonia are eliminated. Results provide insight into distinguishing germ and somatic cell genes and identification of somatic cell genes that are upregulated after irradiation.