Project description:Global amphibian declines and extinction events are currently occurring at an unprecedented rate. While various factors are influencing these declines, one factor that is readily identifiable is disease. Specifically, the fungal pathogen Batrachochytrium dendrobatidis is thought to play a major role in amphibian declines in tropical and neotropical regions of the globe. While the effects of this chytrid fungus have been shown to be devastating, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous microbiome. Many identified bacterial species that make up the microbiome have shown anti-B. dendrobatidis activity in vitro. One bacteria that is commonly associated as being a member of the amphibian microbiome across amphibian species and shows such anti-B. dendrobatidis activity is Serratia marcescens. Here, we look at transcriptomic shifts in gene expression of S. marcescens (high homology to strain WW4) in response to both live and heat-killed B. dendrobatidis.
Project description:Abstract: Natural communities of microbes inhabiting amphibian skin, the skin microbiome, are critical to supporting amphibian health and disease resistance. To enable the pro-active health assessment and management of amphibians on Army installations and beyond, we investigated the effects of acute (96h) munitions exposures to Rana pipiens (leopard frog) tadpoles and the associated skin microbiome, integrated with RNAseq-based transcriptomic responses in the tadpole host. Tadpoles were exposed to the legacy munition 2,4,6-trinitrotoluene (TNT), the new insensitive munition (IM) formulation, IMX-101, and the IM constituents nitroguinidine (NQ) and 1-methyl-3-nitroguanidine (MeNQ). The 96h LC50 values and 95% confidence intervals were 2.6 (2.4, 2.8) for ΣTNT and 68.2 (62.9, 73.9) for IMX-101, respectively. The NQ and MeNQ exposures caused no significant impacts on survival in 96h exposures even at maximum exposure levels of 3,560 and 5,285 mg/L, respectively. However, NQ and MeNQ, as well as TNT and IMX-101 exposures, all elicited changes in the tadpole skin microbiome profile, as evidenced by significantly increased relative proportions of the Proteobacteria with increasing exposure concentrations, and significantly decreased alpha-diversity in the NQ exposure. The potential for direct and indirect effects of munitions exposures on the skin microbiome were observed. A direct effect of munitions on microbial flora included the observation of increased relative abundance of the munitions-tolerant, Aeromonadaceae and Pseudomonadaceae, in the NQ exposure. Potential indirect effects on the tadpole skin microbiome resulting from tadpole-host responses to munitions included transcriptional responses indicative of potential changes in skin mucus-layer properties as well as altered production of antimicrobial peptides and innate immune factors. Additional insights into the tadpole host’s transcriptional response to munitions exposures indicated that TNT and IMX-101 exposures each elicited significant enrichment of pathways involved in type-I and type-II xenobiotic metabolism mechanisms where dose-responsive increases in expression were observed. Significant enrichment and increased transcriptional expression of heme and iron binding functions in the TNT exposures was likely connected with known mechanisms of TNT toxicity including hemolytic anemia and methemoglobinemia. The significant enrichment and dose-responsive decrease in transcriptional expression of cell cycle pathways in the IMX-101 exposures was consistent with previous observations in fish, while significant enrichment of immune-related function in response to NQ exposure indicated potential immune suppression at the highest NQ exposure concentration. Finally, the MeNQ exposures elicited significantly decreased transcriptional expression of keratin 16, type I, a gene likely involved in keratinization processes in amphibian skin. Overall, munitions showed the potential to alter tadpole skin microbiome composition and affect transcriptional profiles in the amphibian host, some indicative of potentially impacted host health and immune status, each of which suggest potential implications for munitions exposure on disease susceptibility.
Project description:Customized Nanostring PanCancer Progression Panel performed on FFPE tumor tissue derived from treatment naive metastatic colorectal cancer patients included into the randomized phase 2 PanaMa trial.
Project description:This experiment examined the transcriptional response of juvenile amphibian hosts (common frog, Rana temporaria) to two important amphibian pathogens: Batrachochytrium dendrobatidis (Bd) and Ranavirus. Common frogs are non-model organisms which do not have a reference genome.
Project description:We used RNA sequencing to comprehensively map the expression of coding and non-coding RNAs in primary human alveolar epithelial type II cells (AECIIs), alveolar macrophages (AMs), human lung tissue, and the epithelial cell line A549 during infection with IAV strain H3N2 Panama