Project description:Linking DNA sequence to genomic function remains one of the grand challenges in genetics and genomics. Here, we combine large-scale single-molecule transcriptome sequencing of diverse cancer cell lines with cutting-edge machine learning to build LoRNASH, an RNA foundation model that learns how the nucleotide sequence of unspliced pre-mRNA dictates transcriptome architecture—the relative abundances and molecular structures of mRNA isoforms. Owing to its use of the StripedHyena architecture, LoRNASH handles extremely long sequence inputs at base-pair resolution (~65 kilobase pairs), allowing for quantitative, zero-shot prediction of all aspects of transcriptome architecture, including isoform abundance, isoform structure, and the impact of DNA sequence variants on transcript structure and abundance. We anticipate that our public data release and the accompanying frontier model will accelerate many aspects of RNA biotechnology. More broadly, we envision the use of LoRNASH as a foundation for fine-tuning of any transcriptome-related downstream prediction task, including cell-type specific gene expression, splicing, and general RNA processing.
Project description:Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy of the childhood pons characterized by a unique lysine-to-methionine substitution in histone-3 at lysine 27 (H3K27M). We show here that the specific Polycomb targets disrupted by H3K27M and resultant oncogenic state is dependent on both the variant of histone-3 and the cell- context in which the mutation occurs. Through primary DIPG tumor characterization and isogenic expression, we show that the same H3K27M mutation displays distinct modes of oncogenic reprogramming and establishes distinct enhancer architecture depending on whether it occurs in genes encoding H3.3 or H3.1. By comparison to non-malignant pediatric pontine tissue, we create a molecular map for DIPG, identifying and functionally validating both shared and subgroup-specific pathophysiology. Directly comparing the earliest events of H3K27M tumor initiation in putative cells-of-origin demonstrates that DIPG arises only from an oligodendrocyte precursor cell state.
Project description:This is a 3-arm randomized trial aimed at increasing rates of participation in colorectal cancer (CRC) screening by outreach to patients’ homes using choice architecture informed by behavioral science principles.