Project description:Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms(1). Platelet factor 4 (PF4) is a platelets-secreted chemokine that can be activated by physical exercise. Recent studies showed that PF4 could improve cognition in aged mice(2), though whether it influences other neurological functions is vague. Here we investigated the role of PF4 in PD and normal aging mice. Intravenous administration of exogenous PF4 ameliorated both motor and non-motor symptoms of MPTP-induced PD mice, accompanying with reduced loss of nigrostriatal dopaminergic neurons and attenuated neuroinflammation in these regions. RNA sequencing showed that pathways related to inflammation were suppressed by PF4, which were confirmed by qPCR and immunohistochemical analysis. More interestingly, PF4 can also ameliorate the motor and non-motor symptoms after the loss of nigrostriatal dopaminergic neurons, and the efficacy can last for 3 weeks after PF4 administration. In addition, an improvement of motor performance and mood by PF4 was also observed in aged but not young mice. Collectively, our results show the potential of PF4 that not only be a therapeutic candidate for PD patients, but also be an option for aged people to improve their neurological performance.
Project description:Exposure to irregular light-dark schedules leads to deficits in affective behaviors. The retino-recipient perihabenular nucleus (PHb) of the dorsal thalamus has been shown to mediate these effects in mice. However, the mechanisms of how light information is processed within the PHb remains unknown. Here, we show that the PHb contains a distinct cluster of GABAergic neurons that receive direct retinal input. These neurons are part of a larger inhibitory network composed of the thalamic reticular nucleus and zona incerta, known to modulate thalamocortical communication. Additionally, PHbGABA neurons locally modulate excitatory-relay neurons, which project to limbic centers. Chronic exposure to irregular light-dark cycles alters photo-responsiveness and synaptic output of PHbGABA neurons, disrupting daily oscillations of genes associated with inhibitory and excitatory PHb signaling. Consequently, selective and chronic PHbGABA manipulation results in mood alterations that mimic those caused by irregular light exposure. Together, light-mediated disruption of PHb inhibitory networks underlies mood deficits.
Project description:Platelet factors regulate wound healing and also signal from the blood to the brain. However, whether platelet factors modulate cognition, a highly valued and central manifestation of brain function, is unknown. Here, we show that systemic platelet factor 4 (PF4) modulates cognition and its molecular signature. Klotho, a longevity and cognition-enhancing protein, acutely activated platelets and increased circulating platelet factors, most robustly platelet factor 4 (PF4). To directly test PF4 effects on the brain, we treated mice with vehicle or systemic PF4. In young mice, PF4 enhanced synaptic plasticity and cognition. In aging mice, PF4 restored cognitive deficits and rejuvenated a molecular signature of cognition in the aging hippocampus. Augmenting platelet factors such as PF4, a possible messenger of klotho, may enhance cognition in the young brain and rejuvenate cognitive deficits in the aging brain.
Project description:MicroRNAs (miRNAs) regulate cell physiology by altering protein expression, but the biology of platelet miRNAs is largely unexplored. We tested whether platelet miRNA levels were associated with platelet reactivity by genome-wide profiling using platelet RNA from 19 healthy subjects. We found that human platelets express 284 miRNAs. Unsupervised hierarchical clustering of miRNA profiles resulted in 2 groups of subjects that appeared to cluster by platelet aggregation phenotypes. Seventy-four miRNAs were differentially expressed (DE) between subjects grouped according to platelet aggregation to epinephrine, a subset of which predicted the platelet reactivity response. Using whole genome mRNA expression data on these same subjects, we computationally generated a high-priority list of miRNA-mRNA pairs in which the DE platelet miRNAs had binding sites in 3'UTRs of DE mRNAs, and the levels were negatively correlated. Three miRNA-mRNA pairs (miR-200b:PRKAR2B, miR-495:KLHL5 and miR-107:CLOCK) were selected from this list and all 3 miRNAs knocked down protein expression from the target mRNA. Reduced activation from platelets lacking PRKAR2B supported these findings. In summary, (1) platelet miRNAs are able to repress expression of platelet proteins, (2) miRNA profiles are associated with and may predict platelet reactivity, and (3) bioinformatic approaches can successfully identify functional miRNAs in platelets. Total RNA from the platelets of 19 donors was harvested and labeled with Hy3. Reference RNA (a pool of all samples) was labeled with Hy5. This submission represents the miRNA expression component of the study.
Project description:MicroRNAs (miRNAs) regulate cell physiology by altering protein expression, but the biology of platelet miRNAs is largely unexplored. We tested whether platelet miRNA levels were associated with platelet reactivity by genome-wide profiling using platelet RNA from 19 healthy subjects. We found that human platelets express 284 miRNAs. Unsupervised hierarchical clustering of miRNA profiles resulted in 2 groups of subjects that appeared to cluster by platelet aggregation phenotypes. Seventy-four miRNAs were differentially expressed (DE) between subjects grouped according to platelet aggregation to epinephrine, a subset of which predicted the platelet reactivity response. Using whole genome mRNA expression data on these same subjects, we computationally generated a high-priority list of miRNA-mRNA pairs in which the DE platelet miRNAs had binding sites in 3'UTRs of DE mRNAs, and the levels were negatively correlated. Three miRNA-mRNA pairs (miR-200b:PRKAR2B, miR-495:KLHL5 and miR-107:CLOCK) were selected from this list and all 3 miRNAs knocked down protein expression from the target mRNA. Reduced activation from platelets lacking PRKAR2B supported these findings. In summary, (1) platelet miRNAs are able to repress expression of platelet proteins, (2) miRNA profiles are associated with and may predict platelet reactivity, and (3) bioinformatic approaches can successfully identify functional miRNAs in platelets.
Project description:The subthalamic nucleus (STN) is an effective therapeutic target for deep brain stimulation (DBS) for Parkinson's disease (PD), and histamine levels are elevated in the basal ganglia in PD patients. However, the effect of endogenous histaminergic modulation on STN neuronal activities and the neuronal mechanism underlying STN-DBS are unknown. Here, we report that STN neuronal firing patterns are more crucial than firing rates for motor control. Histamine excited STN neurons, but paradoxically ameliorated parkinsonian motor deficits, which we attributed to regularizing firing patterns of STN neurons via the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) channel coupled to the H2 receptor. Intriguingly, DBS increased histamine release in the STN and regularized STN neuronal firing patterns under parkinsonian conditions. HCN2 contributed to the DBS-induced regularization of neuronal firing patterns, suppression of excessive β oscillations, and alleviation of motor deficits in PD. The results reveal an indispensable role for regularizing STN neuronal firing patterns in amelioration of parkinsonian motor dysfunction and a functional compensation for histamine in parkinsonian basal ganglia circuitry. The findings provide insights into mechanisms of STN-DBS as well as potential therapeutic targets and STN-DBS strategies for PD.