Project description:The response to moderate and heavy drought of two Solanum tuberosum ssp. Andigena varieties, Sullu (NP 03.03) and SA 2563 (NP 03.01), planted in rain- and soil water protected fields in the Peruvian highlands are compared. Previous experiments indicate that Sullu has a greater capacity for yield maintenance under drought than SA 2563. Both clones have similar morphological properties, vegetative periods and rooting depths, so it can be assumed that the cause for increased drought tolerance of clone NP 03.03 is rather due to physiological or biochemical mechanisms, than to drought escape by deep rooting or earliness. Sullu and SA 2563 were planted in a random block design with 5 plants per bloc and 7 repetitions per treatment. Treatments: (1) drought stress, (2) irrigated control The plants were drip-irrigated in both treatments until tuberization (until day 84 after planting). Subsequently, the irrigation was stopped in the drought field, but continued in the control field. The soil moisture content in the control field was kept near field capacity. Planting date: October 05 2004 Start of drought treatment (during tuberization, 84 days after planting): December 28 2004 First sampling (soil water potential: -0.3 mPa 114 days after planting): January 27 2005 Second sampling (soil water potential –0.6 MPa, 134 days after planting): February 15 2005 Harvest: March 19 2005 (165 days after planting) The experimental design includes gene expression analysis in leaves, roots and stolons at two time points, when soil water potential reaches -0.3 and –0.6 MPa. Gene expression changes will be set in relation with physiological and agronomical data obtained in the same experiment. Keywords: Direct comparison
2007-09-01 | GSE8243 | GEO
Project description:American ginseng
| PRJNA975712 | ENA
Project description:the root soil of American ginseng
Project description:The melting of permafrost and its potential impact on greenhouse gas emissions is a major concern in the context of global warming. The fate of the carbon trapped in permafrost will largely depend on soil physico-chemical characteristics, among which are the quality and quantity of organic matter, pH and water content, and on microbial community composition. In this study, we used microarrays and real-time PCR (qPCR) targeting 16S rRNA genes to characterize the bacterial communities in three different soil types representative of various Arctic settings. The microbiological data were linked to soil physico-chemical characteristics and CO2 production rates. Microarray results indicated that soil characteristics, and especially the soil pH, were important parameters in structuring the bacterial communities at the genera/species levels. Shifts in community structure were also visible at the phyla/class levels, with the soil CO2 production rate being positively correlated to the relative abundance of the Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria. These results indicate that CO2 production in Arctic soils does not only depend on the environmental conditions, but also on the presence of specific groups of bacteria that have the capacity to actively degrade soil carbon.
Project description:Here we have compared adult wildtype (N2) C. elegans gene expression when grown on different bacterial environments/fod sources in an effort to model naturally occuring nematode-bacteria interactions at the Konza Prairie. We hypothesize that human-induced changes to natural environments, such as the addition of nitrogen fertalizer, have effects on the bacterial community in soils and this drives downstream changes in the structure on soil bacterial-feeding nematode community structure. Here we have used transcriptional profiling to identify candidate genes involved in the interaction of nematodes and bacteria in nature.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:The response to moderate and heavy drought of two Solanum tuberosum ssp. Andigena varieties, Sullu (NP 03.03) and SA 2563 (NP 03.01), planted in rain- and soil water protected fields in the Peruvian highlands are compared. Previous experiments indicate that Sullu has a greater capacity for yield maintenance under drought than SA 2563. Both clones have similar morphological properties, vegetative periods and rooting depths, so it can be assumed that the cause for increased drought tolerance of clone NP 03.03 is rather due to physiological or biochemical mechanisms, than to drought escape by deep rooting or earliness. Sullu and SA 2563 were planted in a random block design with 5 plants per bloc and 7 repetitions per treatment. Treatments: (1) drought stress, (2) irrigated control The plants were drip-irrigated in both treatments until tuberization (until day 84 after planting). Subsequently, the irrigation was stopped in the drought field, but continued in the control field. The soil moisture content in the control field was kept near field capacity. Planting date: October 05 2004 Start of drought treatment (during tuberization, 84 days after planting): December 28 2004 First sampling (soil water potential: -0.3 mPa 114 days after planting): January 27 2005 Second sampling (soil water potential –0.6 MPa, 134 days after planting): February 15 2005 Harvest: March 19 2005 (165 days after planting) The experimental design includes gene expression analysis in leaves, roots and stolons at two time points, when soil water potential reaches -0.3 and –0.6 MPa. Gene expression changes will be set in relation with physiological and agronomical data obtained in the same experiment. Keywords: Direct comparison 19 hybs total
Project description:Korean ginseng (Panax ginseng Meyer) has long been cultivated as an important medicinal plant. Drought results from the moderate water loss, which primarily impairs the growth of ginseng and reduction of yield loss. However, basis of biological clues to understanding the accurate mechanisms related to drought stress in proteome level are still elusive. Therefore, we carried out label-free quantitative proteomic analysis using ginseng roots subjected to drought stress which was grown at less than 10% soil moisture for two weeks, compared with normal ginseng which was grown at 25% soil moisture. The acquired proteins were carried out label-free proteomic analysis using LC-MS/MS. This approach led to the identification of total 2,471 proteins, and out of 195 proteins showed significant modulation. Functional classification revealed that proteins related to secondary metabolites, calcium signaling, and photosynthesis were enriched in control sample (cluster_1), while proteins associated with stress responsive, redox, electron transport, and protein synthesis were mainly dominated in cluster_2 (drought stress condition). Taken together, our results provided an overview of the drought-induced proteomic changes in ginseng root, and it is correlated with physiological changes, contributing to reveal potential marker at proteome level in ginseng.