Project description:It has been reported that Cryptosporidium parvum, a species of a protozoan frequently isolated from humans and animals, is able to induce digestive adenocarcinoma in a rodent model. Consistently, some epidemiological studies have reported an association with cryptosporidiosis in patients with colorectal adenocarcinoma. However, the correlation between cryptosporidiosis and human digestive cancer remains unclear at this time, and it is not known whether this intracellular parasite, considered an opportunistic agent, is able to induce gastrointestinal malignancies in humans. In order to add new arguments for a probable association between cryptosporidiosis and digestive human cancer, the main aim of this study is to determine prevalence and to identify species of Cryptosporidium among a French digestive cancer population.
| 2334959 | ecrin-mdr-crc
Project description:P. ananatis onions, weeds, and thrips
Project description:Bacterial endophytes were isolated from nodules of pea and faba bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilisation, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were considered as potential Plant Growth-Promoting Bacteria, able to support plant development in saline soils. In order to shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in presence or not of salt was characterized. The amount of protein expressed by the endophytes was higher in presence of salt. The modulated proteome was composed by 302 (100 up-regulated, 202 down-regulated) and by 323 (206 up-regulated, 117 down-regulated) in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 was thiol:disulfide interchange protein DsbA, required for the sulphur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in two taxonomically correlated species.
Project description:Pseudomonas sp. GM16 associates with Populus, a model plant in biofuel production. Populus releases abundant phenolic glycosides such as salicin, but Pseudomonas sp. GM16 cannot utilize salicin whereas Pseudomonas strains are known to utilize compounds similar to the aglycone moiety of salicin – salicyl alcohol. We propose that the association of Pseudomonas to Populus is mediated by another organism (such as Rahnella sp. OV744) that degrades the glucosyl group of salicin. In this study, we demonstrate that in the Rahnella-Pseudomonas salicin co-culture model, Rahnella grows by degrading salicin to glucose 6-phosphate and salicyl alcohol which is secreted out and is subsequently utilized by Pseudomonas for its growth. Using various quantitative approaches, we elucidate the individual pathways for salicin and salicyl alcohol metabolism present in Rahnella and Pseudomonas, respectively. Furthermore, we were able to establish that the salicyl alcohol cross-feeding interaction between the two strains on salicin medium is carried out through combination of their respective individual pathways. The research presents one of the potential advantages of salicyl alcohol release by strains such as Rahnella, and how phenolic glycosides could be involved in attracting multiple types of bacteria into the Populus microbiome.