Project description:Rodents exposed to the environmental contaminant, TCDD, suffer from a number of acute and chronic toxicities, including lethality and a wasting syndrome. Hypothesizing that the wasting syndrome may be caused by changes in adipose tissue -- either in its hormonal regulation or in homeostatic effects -- we profiled the transcriptional response of rat white adipose to TCDD. We employed two separate rat strains: the Long-Evans strain is sensitive to TCDD toxicities while the Han/Wistar strain is over four orders of magnitude more resistant. One day after TCDD exposure few genes were altered in either strain, but after four days a modest number of transcriptional alterations were observed. Strikingly, TCDD had far fewer effects than did a feed-restriction protocol intended to mimic the wasting syndrome itself. Notably several classic TCDD-responsive genes were modulated at all time-points, including Cyp1a1, Cyp1b1, and Nqo1. We therefore concluded that rat adipose tissue is unlikely to be the primary driver of the wasting syndrome, and that another tissue is likely involved.
Project description:Rodents exposed to the environmental contaminant, TCDD, suffer from a number of acute and chronic toxicities, including lethality and a wasting syndrome. Hypothesizing that the wasting syndrome may be caused by changes in adipose tissue -- either in its hormonal regulation or in homeostatic effects -- we profiled the transcriptional response of rat white adipose to TCDD. We employed two separate rat strains: the Long-Evans strain is sensitive to TCDD toxicities while the Han/Wistar strain is over four orders of magnitude more resistant. One day after TCDD exposure few genes were altered in either strain, but after four days a modest number of transcriptional alterations were observed. Strikingly, TCDD had far fewer effects than did a feed-restriction protocol intended to mimic the wasting syndrome itself. Notably several classic TCDD-responsive genes were modulated at all time-points, including Cyp1a1, Cyp1b1, and Nqo1. We therefore concluded that rat adipose tissue is unlikely to be the primary driver of the wasting syndrome, and that another tissue is likely involved. Two strains, each with drug-treated vs. vehicle-control