Project description:The weathering of volcanic minerals makes a significant contribution to the global silicate weathering budget, influencing carbon dioxide drawdown and climate control. Basalt rocks may account for over 30% of the global carbon dioxide drawdown in silicate weathering. Yet the genetics of biological rock weathering are unknown. For the first time, we apply a DNA microarray to investigate the genes involved in weathering by the heavy metal resistant organism, Cupriavidus metallidurans CH34; in particular we investigate the sequestering of iron. The results show that the bacterium sequesters iron in the ferrous state (FeII); therefore, not requiring siderophores. Instead an energy efficient process involving upregulation of large porins is employed concomitantly with genes associated with biofilm formation. We hypothesise that rock weathering is induced by changes in chemical equilibrium at the microbe-mineral interface, reducing the saturation state of iron. We also demonstrate that low concentrations of metals in the basalt induce heavy metal resistant genes. Volcanic environments are analogous to some of the earliest environments on Earth. These results not only elucidate the mechanisms by which microorganisms might have sequestered nutrients on the early Earth but they also provide an explanation for the evolution of multiple heavy metal resistance genes long before the creation of contaminated industrial biotopes by human activity. Cultures of Cupriavidus metallidurans CH34 were grown in Tris buffered medium MM284 media (with iron), MM284 without iron and MM284 without iron with sterilized basalt at 25 rpm, 30°C until mid-log phase. RNA was extracted from the cells. Three biological replicates of both samples were differentially labeled (resp. Cy3 and Cy5) and hybridized to three CH34 60-mer oligonucleotide glass-spotted microarray carrying three technical repeats.
Project description:The weathering of volcanic minerals makes a significant contribution to the global silicate weathering budget, influencing carbon dioxide drawdown and climate control. Basalt rocks may account for over 30% of the global carbon dioxide drawdown in silicate weathering. Yet the genetics of biological rock weathering are unknown. For the first time, we apply a DNA microarray to investigate the genes involved in weathering by the heavy metal resistant organism, Cupriavidus metallidurans CH34; in particular we investigate the sequestering of iron. The results show that the bacterium sequesters iron in the ferrous state (FeII); therefore, not requiring siderophores. Instead an energy efficient process involving upregulation of large porins is employed concomitantly with genes associated with biofilm formation. We hypothesise that rock weathering is induced by changes in chemical equilibrium at the microbe-mineral interface, reducing the saturation state of iron. We also demonstrate that low concentrations of metals in the basalt induce heavy metal resistant genes. Volcanic environments are analogous to some of the earliest environments on Earth. These results not only elucidate the mechanisms by which microorganisms might have sequestered nutrients on the early Earth but they also provide an explanation for the evolution of multiple heavy metal resistance genes long before the creation of contaminated industrial biotopes by human activity.
2009-12-31 | GSE12133 | GEO
Project description:Heavy metal remediating bacteria
Project description:Initial attachment to a surface marks the onset of a bacterial life style switch from planktonic to biofilm mode of growth. Among dissimilatory iron reducing bacteria, S. oneidensis MR-1 is notable due to its extensive respiratory versatility. It has been hypothesized that direct interaction of Shewanella cells with, or close proximity to, an appropriate surface facilitates the deposition of electrons. In fact, Shewanella species have been demonstrated to adhere to various surfaces and form biofilms. Global transcriptome profiling was performed on cells in the transition to surface-associated growth using different surfaces and conditions to understand molecular mechanisms underlying the initiation of microbe-surface interactions and the switch from planktonic to sessile life style.
Project description:Background: The high number of heavy metal resistance genes in the soil bacterium Cupriavidus metallidurans CH34 makes it an interesting model organism to study microbial responses to heavy metals. Results: In this study the transcriptional response of this bacterium was measured after challenging it to a wide range of sub-lethal concentrations of various essential or toxic metals. Considering the global transcriptional responses for each challenge as well as by identifying the overlap in upregulated genes between different metal responses, the sixteen metals could be clustered in three different groups. Additionally, next to the assessment of the transcriptional response of already known metal resistance genes, new metal response gene clusters were identified. The majority of the metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex cross-talk at transcriptional level between the different metal responses. The highly redundant nature of these metal resistant regions – illustrated by the large number of paralogous genes – combined with the phylogenetic distribution of these metal response regions within evolutionary related and other metal resistant bacteria, provides important insights on the recent evolution of this naturally soil dwelling bacterium towards a highly metal-resistant strain found in harsh and anthropogenic environments. Conclusions: The metal-resistant soil bacterium Cupriavidus metallidurans CH34 displays myriads of gene expression patterns when exposed to a wide range of heavy metals at non-lethal concentrations. The interplay between the different gene expression clusters points towards a complex cross-regulated regulatory network governing heavy metal resistance in C. metallidurans CH34. Keywords: Cupriavidus metallidurans CH34, transcriptional regulation, heavy metal resistance
Project description:Background: The high number of heavy metal resistance genes in the soil bacterium Cupriavidus metallidurans CH34 makes it an interesting model organism to study microbial responses to heavy metals. Results: In this study the transcriptional response of this bacterium was measured after challenging it to a wide range of sub-lethal concentrations of various essential or toxic metals. Considering the global transcriptional responses for each challenge as well as by identifying the overlap in upregulated genes between different metal responses, the sixteen metals could be clustered in three different groups. Additionally, next to the assessment of the transcriptional response of already known metal resistance genes, new metal response gene clusters were identified. The majority of the metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex cross-talk at transcriptional level between the different metal responses. The highly redundant nature of these metal resistant regions – illustrated by the large number of paralogous genes – combined with the phylogenetic distribution of these metal response regions within evolutionary related and other metal resistant bacteria, provides important insights on the recent evolution of this naturally soil dwelling bacterium towards a highly metal-resistant strain found in harsh and anthropogenic environments. Conclusions: The metal-resistant soil bacterium Cupriavidus metallidurans CH34 displays myriads of gene expression patterns when exposed to a wide range of heavy metals at non-lethal concentrations. The interplay between the different gene expression clusters points towards a complex cross-regulated regulatory network governing heavy metal resistance in C. metallidurans CH34. Keywords: Cupriavidus metallidurans CH34, transcriptional regulation, heavy metal resistance Two-condition experiments. Comparing samples after induction with heavy metals versus non-induced samples. Biological duplicate or triplicate. Each array contains 3 or 4 technical replicates.
Project description:Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium capable of forming thick electron-conducting biofilms on solid electrodes in the absence of alternative electron acceptors. The remarkable ability of such biofilms to transfer electrons, liberated from soluble organic electron donors, over long distances has attracted scientific interest as to the mechanism for this process, and technological interest for application to microbial fuel and electrolysis cells and sensors. Here, we employ comparative proteomics to identify key metabolic pathways involved in G. sulfurreducens respiration by planktonic cells versus electron-conducting biofilms, in an effort to elucidate long-range electron transfer mechanisms.
Project description:Globally, multiple heavy metal contamination is an increasingly common problem. As heavy metals have the potential to disrupt microbially-mediated biogeochemical cycling, it is critical to understand their impact on microbial physiology. However, systems-level studies on the effects of a combination of heavy metals on bacteria are lacking. Here, we use a native Bacillus cereus isolate from the subsurface of the Oak Ridge Reservation (ORR; Oak Ridge, TN, USA) subsurface— representing a highly abundant species at the site— to assess the combined impact of eight metal contaminants. Using this metal mixture and individual metals, all at concentrations based on the ORR site geochemistry, we performed growth experiments and proteomic analyses of the B. cereus strain, in combination with targeted MS-based metabolomics and gene expression profiling. We found that the combination of eight metals impacts cell physiology in a manner that could not have been predicted from summing phenotypic responses to the individual metals. Specifically, exposure to the metal mixture elicited global iron starvation responses not observed in any of the individual metal treatments. As nitrate is also a significant contaminant at the ORR site and nitrate and nitrite reductases are iron-containing enzymes, we also examined the effects of the metal mixture on reduction of nitrogen oxides. We found that the metal mixture inhibits the activity of these enzymes through a combination of direct enzymatic damage and post-transcriptional and post-translational regulation. Altogether, these data suggest that metal mixture studies are critical for understanding how multiple rather than individual metals influence microbial processes in the environment.
2022-09-19 | PXD035730 | Pride
Project description:Phylogenomics of heavy metal resistant bacteria isolates