Project description:Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia was associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22–2.77] adjusted for age and sex). In longitudinal comparisons, COVID-19 ICU patients had a distinct proteomic trajectory associated with RNAemia and mortality. Among COVID-19-enriched proteins, galectin-3 binding protein (LGALS3BP) and proteins of the complement system were identified as interaction partners of SARS-CoV-2 spike glycoprotein. Finally, machine learning identified ‘Age, RNAemia’ and ‘Age, pentraxin-3 (PTX3)’ as the best binary signatures associated with 28-day ICU mortality.
Project description:Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia was associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22–2.77] adjusted for age and sex). In longitudinal comparisons, COVID-19 ICU patients had a distinct proteomic trajectory associated with RNAemia and mortality. Among COVID-19-enriched proteins, galectin-3 binding protein (LGALS3BP) and proteins of the complement system were identified as interaction partners of SARS-CoV-2 spike glycoprotein. Finally, machine learning identified ‘Age, RNAemia’ and ‘Age, pentraxin-3 (PTX3)’ as the best binary signatures associated with 28-day ICU mortality.
Project description:While fewer cases of severe Coronavirus Disease 2019 (COVID-19) are reported globally in children, a small proportion of SARS-CoV-2 infected children develop a novel pediatric febrile entity called multisystem inflammatory syndrome in children (MIS-C) that develops 2 to 5 weeks after initial SARS-CoV-2 exposure. MIS-C primarily effects male children and children of Hispanic or black descent. MIS-C manifests as a severe and uncontrolled inflammatory response with multiorgan involvement. A hyperinflammatory state is evidenced by clinical makers of inflammation including high levels of C-reactive protein (CRP), ferritin, and D-dimers, and an increased expression of pro-inflammatory cytokines. Children often present with persistent fever, severe gastrointestinal symptoms, cardiovascular manifestations, respiratory symptoms and neurological symptoms6-11,13. Cardiovascular manifestations include hypotension, shock, cardiac dysfunction, myocarditis and pericardial effusion. In the united states, admission to the intensive care unit occurs in approximately 58% of cases. To understand disease pathogenesis of MIS-C and proteins associated with the severe form of disease we performed proteomics analysis of serum or plasma samples. We collected serum from healthy children (SARS-CoV-2 negative, n=20), mild MIS-C (non-ICU, n=5) and severe MIS-C (ICU, n = 20) patients. MIS-C definition and diagnosis was performed according to CDC guidelines. Healthy adult serum (n = 4) was also used for reference ranges quality control and we obtained plasma samples from Kawasaki Disease (KD; n=7) patients that were recruited before the Coronavirus Disease 2019 (COVID-19) pandemic.
Project description:Objective: COVID19 is caused by the SARS-CoV-2 virus and has been associated with severe inflammation leading to organ dysfunction and mortality. Our aim was to profile the transcriptome in leukocytes from critically ill ICU patients positive for COVID19 vs. those negative for COVID19 to better understand the COVID19 associated host response. Design: Transcriptome profiling of buffy coat cells via ribonucleic acid sequencing (RNAseq) at the time of admission to the ICU. Setting: Tertiary care ICU and academic laboratory. Subjects: All patients admitted to the ICU suspected of being infected with SARS-CoV-2, using standardized hospital screening methodologies, had blood samples collected at the time of admission to the ICU. Interventions: None. Measurement and Main Results: Age- and sex-matched ICU patients that were either COVID19+ (PCR positive, 2 genes) or COVID19- (PCR negative) were enrolled. Cohorts were well-balanced with the exception that COVID19- patients had significantly higher total white blood cell counts and circulating neutrophils and COVID19+ patients were more likely to suffer bilateral pneumonia compared to COVID19- patients. Further, the mortality rate for this cohort of COVID19+ ICU patients was 29%. Transcriptional analysis revealed that when compared to COVID19- patients, the altered transcriptional responses of leukocytes in critically ill COVID19+ ICU patients appeared to be associated with multiple interrelated outcomes, including but not limited to robust interferon (IFN)-associated transcriptional responses, a marked decrease in the transcriptional activity of genes contributing to protein synthesis and the dysregulated expression of genes that contribute to coagulation, platelet activation, Toll-like receptor activation, neurotrophin signaling, and protein SUMOylation/ubiquitination. Conclusions: COVID19+ patients on day 1 of admission to the ICU display a unique leukocyte transcriptional profile that distinguishes them from COVID19- patients. Identification of this profile provides guidance for future targeted studies exploring novel prognostic/therapeutic aspects of COVID19.