Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from cultures of Chlamydomonas reinhardtii (in control, phosphate starvation and sulphate starvation conditions). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the genome under study.
Project description:RNA populations in Chlamydomonas reinhardtii Keywords: Highly parallel pyrosequencing Small RNAs were prepared from Chlamydomonas reinhardtii total extracts,ligated to a 3' adaptor and a 5' acceptor sequentially, and then RT-PCR amplified. PCR products were reamplified using a pair of 454 cloning primers and provided to 454 Life Sciences (Branford, CT) for sequencing. For technical details, see Tao Zhao, Guanglin Li, Shijun Mi, Shan Li, Gregory J. Hannon, Xiu-Jie Wang, and Yijun Qi. 2007. A Complex System of Small RNAs in the Unicellular Green Alga Chlamydomonas reinhardtii. Genes & Development
Project description:We used Chlamydomonas microarray v2.0 to compare the time course expression profiles of two Chlamydomonas reinhardtii strains: wild-type WT and the high hydrogen producing mutant Stm6Glc4 during sulfur starvation induced hydrogen production. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H2 production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher hydrogen production in the mutant including higher light sensitivity and lower competitions with hydrogenase by alternative electron sinks. Under S-starvation induced H2 producing conditions the induction of LHCSR3, a chlorophyll binding protein involving in non photochemical quenching, was significantly lower in Stm6Glc4 resulting in significant higher photodamage to photosystem II. Consequently, Stm6Glc4 had a shorter aerobic phase, consumed less starch reserves, and produced H2 earlier at higher rates than WT. We also showed that the loss of mitochondrial DNA-binding protein MOC1 in both knockdown and knockout mutant resulted in higher light sensitivity and improved H2 yield. Furthermore, by comparing our data with previously published ‘omics’ data, we were able to identify genes that responded specifically to either sulfur starvation, anaerobiosis or hydrogen production as well as to provide a more complete picture of S-deprived H2 production in the green alga C. reinhardtii.
Project description:endogenous small RNAs from Chlamydomonas reinhardtii strain J3(mt-) vegetative cells Keywords: High throughput 454 small RNA sequencing
Project description:Chlamydomonas reinhardtii exposed to various concentrations of silver For this experiment,C. reinhardtii were exposed to (4) different concentrations of silver, as biological triplicates
Project description:Chlamydomonas reinhardtii strain CC849 is seclected to sequence its transcriptome at different times under normal and stress conditions.Before we conducted RNA-sequencing at 0h (start point) and other seven timepoints(24hour, 48hour, 72hour, 96hour, 120hour, 168hour, 192hour) under normal and stress condition, respectively. These data are contained in GSE100763. Now, we add the RNA-seq data at 4hour, 12hour under normal and stress condition, respectively.
Project description:DCL3 appeared several times in a forward genetic screen meant to isolate genes involved in miRNA-mediated RNA silencing in Chlamydomonas reinhardtii. Because of that, and in order to define the role of DCL3 in the processing of small RNAs on a genome-wide basis, we sequence the small RNA transcriptome of dcl3 mutant and parental lines.