Project description:We introduce CUT&RUNTools (https://bitbucket.org/qzhudfci/cutruntools/) as a flexible, general pipeline for facilitating the identification of chromatin-associated protein binding and genomic footprinting analysis from antibody-targeted CUT&RUN primary cleavage data. CUT&RUNTools extracts endonuclease cut site information from sequences of short read fragments and produces single-locus binding estimates, aggregate motif footprints, and informative visualizations to support the high-resolution mapping capability of CUT&RUN. We illustrate the functionality of CUT&RUNTools through analysis of CUT&RUN data acquired for GATA1, a master regulator in erythroid lineage cells. Results were compared initially to published GATA1 ChIP-seq data for cells under the same conditions. We performed de novo analysis of CUT&RUN peaks to retrieve not only GATA1’s primary motif, but also the GATA1-TAL1 composite motif, and co-factor motifs GCCCCGCCTC, CMCDCCC, and RTGASTCA that correspond to SP1, KLF1, and NFE2 co-factors. Cofactor binding was verified by independent TAL1 and KLF1 CUT&RUN, and other ChIP-seq experiments. CUT&RUNTools also generated base-pair resolution motif footprint for sequence-specific binding factors, and located likely direct binding sites by quantifying log-odds of binding scores. Overall, CUT&RUNTools should enable biologists to realize advantages of cleavage data provided by CUT&RUN, and make high-quality footprinting analysis accessible to a broad audience.
Project description:Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin transcriptional activators, proteins harbouring a domain of unknown function (DUF2249), and a cyanoglobin. Additionally, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.
2024-04-22 | GSE245042 | GEO
Project description:Biofilm samples from sulfur-based autotrophic denitrification fluidizing bed
Project description:A hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the human pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Here, we made use of the distinct MifR-dependent phenotypes to elucidate mechanisms associated with microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that cells located within microcolonies experience stressful, oxygen limited, and energy starving conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate partly restored microcolony formation in M-bM-^HM-^FmifR biofilms. Moreover, addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation. Consistent with the finding of denitrification genes not demonstrating distinct expression patterns in biofilms forming or lacking microcolonies, addition of nitrate did not alter microcolony formation. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation to the oxygen limitation and energy starvation of the P. aeruginosa biofilm environment. For biofilm growth experiments, three independent replicates of P. aeruginosa strains PAO1 and M-NM-^TmifR were grown as biofilms in a flow-through system using a once-through continuous flow tube reactor system for biofilm sample collection and in flow cells (BioSurface Technologies) for the analysis of biofilm architecture as previously described (Sauer et al., 2002, Sauer et al., 2004, Petrova & Sauer, 2009). Cells were treated with RNAprotect (Qiagen) and total RNA was extracted using an RNeasy mini purification kit (Qiagen) per the manufacturerM-bM-^@M-^Ys instructions. RNA quality and the presence of residual DNA were checked on an Agilent Bioanalyzer 2100 electrophoretic system pre- and post-DNase treatment. Ten micrograms of total RNA was used for cDNA synthesis, fragmentation, and labeling according to the Affymetrix GeneChip P. aeruginosa genome array expression analysis protocol. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton & D. G. Davies, (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154. Sauer, K., M. C. Cullen, A. H. Rickard, L. A. H. Zeef, D. G. Davies & P. Gilbert, (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186: 7312-7326. Petrova, O. E. & K. Sauer, (2009) A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathogens 5: e1000668.