Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain.
Project description:Trichoderma harzianum T34 is a fungal strain able to promote the plant growth and to increase plant defense responses. Trichoderma harzianum transformants expressing the amdS gene, encoding an acetamidase, of Aspergillus nidulans produce a higher plant development than the wild type T34. We used microarrays to analyze the physiological and biochemical changes in tomato plants produced as consequence of interaction with Trichoderma harzianum T34 and amdS transformants
Project description:Trichoderma reesei is the main industrial producer of cellulases and hemicellulases used to depolymerize biomass in many biotechnical applications. Many production strains in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in hyperproducing mutants of T. reesei by high-resolution comparative genomic hybridisation tiling array. We carried out aCGH analysis of four hyperproducing strains (QM9123, QM9414, NG14 and RutC-30) using QM6a genome as a reference. ArrayCGH analysis identified dozens of mutations in each strain analyzed.
Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain. One biological replicate