Project description:Resistance to endocrine therapy agents has presented a clinical obstacle in the treatment of hormone-dependent breast cancer. Our laboratory has initiated a study of microRNA regulation of signaling pathways that may result in breast cancer progression on aromatase inhibitors (AI). Microarray analysis of microRNA expression identified 115 significantly regulated microRNAs, of which 49 microRNAs were believed to be hormone-responsive. Within the AI-resistant cells, microRNAs were differentially expressed between the steroidal and non-steroidal AI-resistant lines. Also, a group of microRNAs were inversely expressed in the AI-resistant lines versus LTEDaro and tamoxifen-resistant. We focused our work on hsa-miR-128a which was hormone-responsive and up-regulated in the letrozole-resistant cell lines. Human miR-128a was shown to negatively target TGFBRI protein expression by binding to the 3âUTR region of the gene. Loss of TGFBRI resulted in compromised sensitivity to the growth inhibitory effects of TGFB in the letrozole-resistant lines. Inhibition of endogenous miR-128a resulted in re-sensitization of the letrozole-resistant lines to TGFB growth inhibitory effects. This data suggests that the hormone-responsive miR-128a can modulate TGFB signaling and survival of the letrozole-resistant cell lines. To our knowledge, this is the first study to address the role of microRNA regulation as well as TGFB signaling in AI-resistant breast cancer cell lines. We believe that in addition to estrogen-modulation of gene expression, hormone-regulated microRNAs may provide an additional level of post-transcriptional regulation of signaling pathways critically involved in breast cancer progression and AI-resistance. To look at microRNA expression profiles of breast cancer cell lines derived from MCF-7 cells that are resistant to endocrine therapy agents. MCF-7 cells that overexpress aromatase (MCF-7aro) were cultured long-term in the presence of endocrine therapy agents until cells acquired resistance. Three different aromatase inhibitors (letrozole, anastrozole or exemestane) were used, as well as the ER antagonist tamoxifen, or the hormone-free long-term estrogen deprived cells (LTED). Three replicates of the control cells (MCF-7aro) and all resistant cells were used for microarray experiments. Total of 23 samples were analyzed by microarray.
Project description:Endocrine therapy resistance remains a critical problem in the treatment of estrogen receptor alpha (ERα) breast cancer. Endocrine therapies target ERα via different modes of action. Drug resistance involves drug specific remodeling of the transcriptional and regulatory landscape. Using epigenomics and transcriptomics, we demonstrate that resistance to aromatase inhibitors (AI) induces phenotypical changes through epigenetic activation of cholesterol biosynthesis (CB) and keratin 80. Epigenetic activation is stable and involves both large topological domains and punctuated activation of single enhancers and super-enhancers. Specialized cancer cells expressing high levels of keratin 80 lead invasion through the extracellular matrix. Strikingly, we demonstrate that anti-cholesterol strategies can effectively arrest breast cancer invasion. Our work identifies a robust strategy to target resistant invasive breast cancer. All cell lines were grown in their respective media until they reached 70% confluency. Specifically, MCF7 were grown in DMEM+10% FBS and 1% Pen-Sprep-Glutamine. MCF7T as MCF7 with the addition of 100nM Tamoxifen. MCF7F as MCF7 with the addition of 100nM Fulvestrant. LTED were grown in DMEM without phenol + 10% DCS-FBS and1% Pen-Sprep-Glutamine. LTEDT as LTED with the addition of 100nM Tamoxifen. LTEDF as LTED with the addition of 100nM of Fulvestrant. All chemicals are purchased from Sigma. ChIP-seq was performed using Illumina methodology.
Project description:To explore the mechanism of endocrine resistance development in estrogen receptor positive breast cancer, transcriptome analysis of MCF-7 and its endocrine resistant derivatives, including tamoxifen resistant (TAMR) sub-lines and long-term estrogen deprivation (LTED) sub-lines, were performed using microarray.
Project description:MCF-7aro cells were used to generate a cell culture model system that is resistant to 3 aromatase inhibitors (AIs), letrozole, anastrozole and exemestane. For comparison, the MCF-7aro cells were also used to generate the tamoxifen-resistant cells as well as long-term estrogen deprived, LTEDaro. Affymetrix microarray analysis was performed to determine changes in gene expression that are unique to AI-resistance. Keywords: cell lines, aromatase inhibitor resistance, tamoxifen resistance
Project description:Resistance to endocrine therapy agents has presented a clinical obstacle in the treatment of hormone-dependent breast cancer. Our laboratory has initiated a study of microRNA regulation of signaling pathways that may result in breast cancer progression on aromatase inhibitors (AI). Microarray analysis of microRNA expression identified 115 significantly regulated microRNAs, of which 49 microRNAs were believed to be hormone-responsive. Within the AI-resistant cells, microRNAs were differentially expressed between the steroidal and non-steroidal AI-resistant lines. Also, a group of microRNAs were inversely expressed in the AI-resistant lines versus LTEDaro and tamoxifen-resistant. We focused our work on hsa-miR-128a which was hormone-responsive and up-regulated in the letrozole-resistant cell lines. Human miR-128a was shown to negatively target TGFBRI protein expression by binding to the 3’UTR region of the gene. Loss of TGFBRI resulted in compromised sensitivity to the growth inhibitory effects of TGFB in the letrozole-resistant lines. Inhibition of endogenous miR-128a resulted in re-sensitization of the letrozole-resistant lines to TGFB growth inhibitory effects. This data suggests that the hormone-responsive miR-128a can modulate TGFB signaling and survival of the letrozole-resistant cell lines. To our knowledge, this is the first study to address the role of microRNA regulation as well as TGFB signaling in AI-resistant breast cancer cell lines. We believe that in addition to estrogen-modulation of gene expression, hormone-regulated microRNAs may provide an additional level of post-transcriptional regulation of signaling pathways critically involved in breast cancer progression and AI-resistance.
Project description:Background: Invasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin, and high expression of estrogen receptor alpha (ER). Many patients with ILC are effectively treated with adjuvant aromatase inhibitors (AIs), however, acquired AI resistance remains a significant problem. Methods: To identify underlying mechanisms of acquired antiestrogen resistance in ILC, we developed a total of 6 long-term estrogen-deprived (LTED) variant cell lines of the human ILC cell lines SUM44PE (SUM44; 2 lines) and MDA-MB-134VI (MM134; 4 lines). To better understand mechanisms of AI resistance in these models, we performed transcriptional profiling analysis by RNA-sequencing. Results: MM134 LTED cells expressed ER at decreased level and lost growth response to estradiol, while SUM44 LTED cells retained partial ER activity. Our transcriptional profiling analysis identified shared activation of lipid metabolism across all 6 independent models. However, the underlying basis of this signature was distinct between models. Oxysterols were able to promote the proliferation of SUM44 LTED cells, but not MM134 LTED. In contrast, MM134 LTED cells displayed high expression of the Sterol regulatory element-binding protein 1 (SREBP1), a regulator of fatty acid and cholesterol synthesis, and were hypersensitive to genetic or pharmacological inhibition of SREBPs. Several SREBP1 downstream targets involved in fatty acid synthesis, including FASN, were induced, and MM134 LTED cells were more sensitive to etomoxir, an inhibitor of the rate-limiting enzyme in β-oxidation, than their respective parental control cells. Conclusions: Our characterization of a unique series of AI-resistant ILC models identifies a lipogenic phenotype, including overexpression of SREBP1. This novel metabolic target deserves further study for the prevention and treatment of AI-resistance for patients with ILC.
Project description:Phosphoinositide-3-kinase/protein-kinaseB/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling plays an important role in breast cancer (BC). Its interaction with estrogen receptor (ER) signalling becomes more complex and inter-dependent with acquired endocrine resistance. Targeting mTOR combined with endocrine therapy has shown clinical utility, however, a negative feedback-loop exists downstream of PI3K/AKT/mTOR. Direct blockade of AKT together with endocrine therapy may improve BC treatment. AZD5363, a novel pan-AKT kinase catalytic inhibitor, was examined in a panel of ER+ BC cell lines (MCF7, HCC1428, T47D, ZR75.1) adapted to long-term-estrogen-deprivation (LTED) or tamoxifen (TamR). AZD5363 caused a dose-dependent decrease in proliferation in all cell lines tested (GI50<500nM) except HCC1428 and HCC1428-LTED. T47D-LTED and ZR75-LTED were the most sensitive of the lines (GI50~100nM). AZD5363 re-sensitised TamR cells to tamoxifen and acted synergistically with fulvestrant. AZD5363 decreased p-AKT/mTOR targets leading to a reduction in ERα-mediated transcription in a context specific manner and concomitant decrease in recruitment of ER and CREB-binding protein (CBP) to estrogen-response-elements located on the TFF1, PGR and GREB1 promoters. Furthermore, AZD5363 reduced expression of cell-cycle-regulatory proteins. Global gene expression highlighted ERBB2-ERBB3, ERK5 and IGF1 signaling pathways driven by MYC as potential feedback-loops. Combined treatment with AZD5363 and fulvestrant showed synergy in an ER+ patient derived xenograft and delayed tumour progression post-cessation of therapy. These data support the combination of AZD5363 with fulvestrant as a potential therapy for BC that is sensitive or resistant to E-deprivation or tamoxifen and that activated AKT is a determinant of response, supporting the need for clinical evaluation. Cell lines were treated in biological triplicates in the absence of estrogen with or without AZD5363 for 24hours in order to identify gene changes associated with perturbation of AKT signalling
Project description:Tamoxifen, an antagonist to estrogen receptor (ER), is a first line drug used in breast cancer treatment. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying the resistance to tamoxifen, we established a tamoxifen-resistant cell line by treating the MCF7 breast cancer cell line with tamoxifen for over 6 months. We showed that this cell line exhibited resistance to tamoxifen both in vitro and in vivo. In order to quantify the phosphorylation alterations associated with tamoxifen resistance, we performed SILAC-based quantitative phosphoproteomic profiling on the resistant and vehicle-treated sensitive cell lines where we identified >5,600 unique phosphopeptides. We found phosphorylation levels of 1,529 peptides were increased (>2 fold) and 409 peptides were decreased (<0.5-fold) in tamoxifen resistant cells compared to tamoxifen sensitive cells. Gene set enrichment analysis revealed that focal adhesion pathway was the top enriched signaling pathway activated in tamoxifen resistant cells. We observed hyperphosphorylation of the focal adhesion kinases FAK1 and FAK2 in the tamoxifen resistant cells. Of note, FAK2 was not only hyperphosphorylated but also transcriptionally upregulated in tamoxifen resistant cells. Suppression of FAK2 by specific siRNA knockdown could sensitize the resistant cells to the treatment of tamoxifen. We further showed that inhibiting FAK activity using the small molecule inhibitor PF562271 repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 significantly associated with short metastasis-free survival of ER-positive breast cancer patients treated with tamoxifen-based hormone therapy. Our studies suggest that FAK2 is a great potential target for the development of therapy for the treatment of hormone refractory breast cancers.
Project description:Endocrine therapies targeting the proliferative effect of 17β-estradiol (17βE2) through estrogen receptor α (ERα) are the most effective systemic treatment of ERα-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through a molecular mechanism that is not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors (AIs) in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7-LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ERα. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were influenced by transcription factors known to be involved in acquired resistance or cell proliferation (e.g. IRF1 and E2F1, respectively) but, notably, not by canonical ERα transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ERα were observed during MCF7-LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7-LTED and breast tumor transcriptome profiles that characterize ERα-negative status, early response to letrozole and recurrence after tamoxifen treatment. This study proposes a mechanism for acquired resistance to estrogen deprivation that is coordinated across biological levels and independent of canonical ERα function. LTED (long term estrogen deprived) cell line was generated from MCF-7 cells by long-term culture under estrogen deprivated conditions. And RNA samples were obtained after 3, 15, 30, 90, 120, 150 and 180 days.
Project description:Endocrine therapies targeting the proliferative effect of 17β-estradiol (17βE2) through estrogen receptor α (ERα) are the most effective systemic treatment of ERα-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through a molecular mechanism that is not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors (AIs) in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7-LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ERα. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were influenced by transcription factors known to be involved in acquired resistance or cell proliferation (e.g. IRF1 and E2F1, respectively) but, notably, not by canonical ERα transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ERα were observed during MCF7-LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7-LTED and breast tumor transcriptome profiles that characterize ERα-negative status, early response to letrozole and recurrence after tamoxifen treatment. This study proposes a mechanism for acquired resistance to estrogen deprivation that is coordinated across biological levels and independent of canonical ERα function.