Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Members of the genus Acinetobacter drag attention due to their importance in microbial pathology and biotechnology. OmpA is a porin with multifaceted functions in different species of Acinetobacter. In this study we identified this protein in Acinetobacter sp. SA01, an efficient phenol degrader strain, in different cellular and sub-cellular compartments (such as OM, OMV, biofilm and extracellular environment). Differential expression of proteins, including OmpA, under two conditions of phenol and ethanol supplementation was assessed using shotgun proteomics.
Project description:Two Acinetobacter baumannii strains with low susceptibility to fosmidomycin and two reference with high susceptibility to fosmidomycin were DNA-sequenced to investigate the genomic determinants of fosmidomycin resistance.
Project description:We report the effect of the deletion of novel RNA polymerase binding protein AtfA on genome-wide transcription in Acinetobacter baylyi ADP1. Compared the transcription profile of wt vs atfA knockout in Acinetobacter baylyi ADP1 using RNA-seq.
Project description:Acinetobacter baumannii is a Gram-negative pathogen that has emerged as one of the most troublesome pathogens for health care institutions globally. Bacterial quorum sensing (QS) is a process of cell-to-cell communication that relies on the production, secretion and detection of autoinducer (AI) signals to share information about cell density and regulate gene expression accordingly. The molecular and genetic basis of Acinetobacter baumannii virulence remains poorly understood. Therefore, the contribution of the abaI/abaR quorum sensing system to growth characteristics, morphology, biofilm formation, resistance, motility and virulence of Acinetobacter baumannii was studied in detail. RNA-seq analysis indicated that genes involved in various aspects of energy production and conversion, Valine, leucine and isoleucine degradation and lipid transport and metabolism are associated with bacterial pathogenicity. Our work provides a new insight into abaI/abaR quorum sensing system effects pathogenicity in A. baumannii. We propose that targeting the AHL synthase enzyme abaI could provide an effective strategy for attenuating virulence. On the contrary, interdicting the autoinducer synthase–receptor abaR elicits unpredictable consequences, which may lead to enhanced bacterial virulence.