Project description:Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by post-translational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis. Here, we identify the transcriptional factor interferon regulatory factor-2 binding protein 2 (IRF2BP2) as a repressor of adipocyte lipolysis. Deletion of IRF2BP2 in primary human adipocytes increases lipolysis without affecting glucose uptake, whereas IRF2BP2 overexpression decreases lipolysis. RNA-seq and ChIP-seq analyses reveal that IRF2BP2 directly represses several lipolysis-related genes, including LIPE (HSL, hormone sensitive lipase), which encodes the rate-limiting enzyme in lipolysis. Adipocyte-selective deletion of Irf2bp2 in mice increases Lipe expression and free fatty acid levels, resulting in elevated adipose tissue inflammation and glucose intolerance. Altogether, these findings demonstrate that IRF2BP2 restrains adipocyte lipolysis and opens new avenues to target lipolysis for the treatment of metabolic disease.
Project description:Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by post-translational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis. Here, we identify the transcriptional factor interferon regulatory factor-2 binding protein 2 (IRF2BP2) as a repressor of adipocyte lipolysis. Deletion of IRF2BP2 in primary human adipocytes increases lipolysis without affecting glucose uptake, whereas IRF2BP2 overexpression decreases lipolysis. RNA-seq and ChIP-seq analyses reveal that IRF2BP2 directly represses several lipolysis-related genes, including LIPE (HSL, hormone sensitive lipase), which encodes the rate-limiting enzyme in lipolysis. Adipocyte-selective deletion of Irf2bp2 in mice increases Lipe expression and free fatty acid levels, resulting in elevated adipose tissue inflammation and glucose intolerance. Altogether, these findings demonstrate that IRF2BP2 restrains adipocyte lipolysis and opens new avenues to target lipolysis for the treatment of metabolic disease.
Project description:Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by post-translational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis. Here, we identify the transcriptional factor interferon regulatory factor-2 binding protein 2 (IRF2BP2) as a repressor of adipocyte lipolysis. Deletion of IRF2BP2 in primary human adipocytes increases lipolysis without affecting glucose uptake, whereas IRF2BP2 overexpression decreases lipolysis. RNA-seq and ChIP-seq analyses reveal that IRF2BP2 directly represses several lipolysis-related genes, including LIPE (HSL, hormone sensitive lipase), which encodes the rate-limiting enzyme in lipolysis. Adipocyte-selective deletion of Irf2bp2 in mice increases Lipe expression and free fatty acid levels, resulting in elevated adipose tissue inflammation and glucose intolerance. Altogether, these findings demonstrate that IRF2BP2 restrains adipocyte lipolysis and opens new avenues to target lipolysis for the treatment of metabolic disease.
Project description:Knocking down IRF2BP2 led to decreased T-cell acute lymphoblastic leukemia (T-ALL) cell survival and growth both in vitro and in vivo. To explore IRF2BP2-dependent gene regulation, RNA-seq analysis was conducted and the differently expressed genes were revealed in the IRF2BP2-knockdown J.gamma1 cells in comparison to control group. Cleavage Under Targets and Tagmentation (CUT&Tag) showed the co-localization of IRF2BP2 with several master transcription factors on chromatin in J.gamma1 cells.
Project description:MYCN and SOX11 are master transcription factors (TFs) in neuroblastoma by directly occupying each other's and their own super-enhancers (SEs). Additionally, Master TFs cooperatively co-occupy the same SE components, which promotes the expression of IRF2BP2 involved in cell survival. We also observed the significant enrichment of the AP-1 family at the binding sites of IRF2BP2. In the present study, CUT&Tag (Cleavage Under Targets and Tagmentation) analysis was performed to explore the target of IRF2BP2, MYCN, AP-1 and SOX11 in NB cells.
Project description:SOX6 CUT&RUN on HUDEP1 over expressing SOX6-Flag. The experiment is done using and anti Flag Ab to assist the genome wide binding profile of SOX6 in HUDEP1 (Human Umbilical cord blood-Derived Erythroid Progenitor-1).