Project description:Analysis of wildtype (N2) C. elegans fed different diets: E. coli OP50, Comamonas DA1877, and Diluted Comamonas (1:1000 Comamonas DA1877:E. coli OP50) Dietary composition has major effects on physiology. Here we show that developmental rate, reproduction and lifespan are altered in C. elegans fed Comamonas DA1877 relative to those fed a standard E. coli OP50 diet. We identify a set of genes that change in expression in response to this diet, and use the promoter of one of these (acdh-1) as a dietary sensor. Remarkably, the effects on transcription and development occur even when Comamonas DA1877 is diluted with another diet, suggesting that Comamonas DA1877 generates a signal that is sensed by the nematode. Surprisingly, the developmental effect is independent from TOR and insulin signaling. Rather, Comamonas DA1877 affects cyclic gene expression during molting, likely through the nuclear hormone receptor NHR-23. Altogether, our findings indicate that different bacteria elicit various responses via distinct mechanisms, which has implications for diseases such as obesity and the interactions between the human microbiome and intestinal cells.
Project description:Analysis of wildtype (N2) C. elegans fed different diets: E. coli OP50, Comamonas DA1877, and Diluted Comamonas (1:1000 Comamonas DA1877:E. coli OP50) Dietary composition has major effects on physiology. Here we show that developmental rate, reproduction and lifespan are altered in C. elegans fed Comamonas DA1877 relative to those fed a standard E. coli OP50 diet. We identify a set of genes that change in expression in response to this diet, and use the promoter of one of these (acdh-1) as a dietary sensor. Remarkably, the effects on transcription and development occur even when Comamonas DA1877 is diluted with another diet, suggesting that Comamonas DA1877 generates a signal that is sensed by the nematode. Surprisingly, the developmental effect is independent from TOR and insulin signaling. Rather, Comamonas DA1877 affects cyclic gene expression during molting, likely through the nuclear hormone receptor NHR-23. Altogether, our findings indicate that different bacteria elicit various responses via distinct mechanisms, which has implications for diseases such as obesity and the interactions between the human microbiome and intestinal cells. 3 biological replicates for each condition, OP50 is reference sample