Project description:ra10-02_viromouv - viromouv - transcriptome analysis of Arabidopsis Companion cells after infection by plants viruses - Transgenic plants expressing GFP under the control of a companion cell specific promoter were infected by two different viruses: LMV and TuYV. Companion cell protoplasts from these plants were sorted by FACS and extracted RNA were compared to healthy companion cell protoplasts.
Project description:ra10-02_viromouv - viromouv - transcriptome analysis of Arabidopsis Companion cells after infection by plants viruses - Transgenic plants expressing GFP under the control of a companion cell specific promoter were infected by two different viruses: LMV and TuYV. Companion cell protoplasts from these plants were sorted by FACS and extracted RNA were compared to healthy companion cell protoplasts. 10 dye-swap - normal vs disease comparison
Project description:Objectives: Our work focuses on the responses of Solanaceous plants to viruses that cause economically important diseases in tree fruits. Using mock inoculated leaf tissue as a reference, we plan to compare the gene expression profiles of Nicotiana Benthamiana plants infected with one of three viruses; Plum Pox Potyvirus (PPV), Tomato Ringspot Nepovirus (ToRSV), and Prunus Nectrotic Ringspot Nepovirus (PNRSV). Our goals are as follows: (1) Identify genes that are induced/repressed in response to individual viruses. (2) Identify genes that are induced/repressed in response to all 3 viruses. (3) Compare results to existing potato array data to look for similarities in responses to other pathogens. Experimental Design: Nicotiana benthamiana plants were inoculated with one of three viruses: PPV, ToRSV, or PNRSV. 3 week old plants were inoculated by rubbing virus infected plant sap onto leaves dusted with carborundum. Control plants were mock inoculated using sap from healthy plants. All plants were maintained in a growth chamber at 22C for 18 days. 8 plants were inoculated with each virus or mock inoculated. This experiment was repeated twice. 4 biological replicates derived from 2 virus infected plants from each replica experiment (4 plants) are to be used for hybridizations. RNA from all mock inoculated plants was similarly pooled to create 4 biological replicates. Each replicate control will serve as a universal reference sample that is to be hybridized pair wise with each of the three virus infected samples. RNA extraction: After 18 days, un-inoculated leaves displaying clear symptoms were harvested and immediately frozen in liquid N2. Total RNA was purified using Trizol according to TIGRs listed protocol. RNA was subsequently treated with Turbo DNA-free RNase (Ambion cat#1907). Finally, total RNA was further purified on RNeasy columns (Qiagen) according to manufacturer’s instructions and quantified using a Nanodrop spectrophotometer. Keywords: Reference design
Project description:Objectives: Our work focuses on the responses of Solanaceous plants to viruses that cause economically important diseases in tree fruits. Using mock inoculated leaf tissue as a reference, we plan to compare the gene expression profiles of Nicotiana Benthamiana plants infected with one of three viruses; Plum Pox Potyvirus (PPV), Tomato Ringspot Nepovirus (ToRSV), and Prunus Nectrotic Ringspot Nepovirus (PNRSV). Our goals are as follows: (1) Identify genes that are induced/repressed in response to individual viruses. (2) Identify genes that are induced/repressed in response to all 3 viruses. (3) Compare results to existing potato array data to look for similarities in responses to other pathogens. Experimental Design: Nicotiana benthamiana plants were inoculated with one of three viruses: PPV, ToRSV, or PNRSV. 3 week old plants were inoculated by rubbing virus infected plant sap onto leaves dusted with carborundum. Control plants were mock inoculated using sap from healthy plants. All plants were maintained in a growth chamber at 22C for 18 days. 8 plants were inoculated with each virus or mock inoculated. This experiment was repeated twice. 4 biological replicates derived from 2 virus infected plants from each replica experiment (4 plants) are to be used for hybridizations. RNA from all mock inoculated plants was similarly pooled to create 4 biological replicates. Each replicate control will serve as a universal reference sample that is to be hybridized pair wise with each of the three virus infected samples. RNA extraction: After 18 days, un-inoculated leaves displaying clear symptoms were harvested and immediately frozen in liquid N2. Total RNA was purified using Trizol according to TIGRs listed protocol. RNA was subsequently treated with Turbo DNA-free RNase (Ambion cat#1907). Finally, total RNA was further purified on RNeasy columns (Qiagen) according to manufacturer’s instructions and quantified using a Nanodrop spectrophotometer. Keywords: Reference design 23 hybs total
Project description:Small RNAs play essential regulatory roles in genome stability, development and stress responses in most eukaryotes. Plants encode DICER-LIKE (DCL) RNaseIII enzymes, including DCL1, which produces miRNAs, and DCL2, DCL3 and DCL4, which produce diverse size classes of siRNA. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. Small RNA sequencing in plants over-expressing RTL1 or RTL2 or lacking RTL2 revealed that RTL1 over-expression inhibits the accumulation of all types of small RNAs produced by DCL2, DCL3 and DCL4, indicating that RTL1 is a general suppressor of plant siRNA pathways. By contrast, RTL2 plays minor, if any, role in the small RNA repertoire. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by degrading dsRNA before they are processed by DCL2, DCL3 and DCL4. The substrate of RTL1 cleavage is likely long perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from short imperfect dsRNA. RTL1 is naturally expressed only weakly in roots, but virus infection strongly induces its expression in leaves, suggesting that RTL1 induction is a general strategy used by viruses to counteract the siRNA-based plant antiviral defense. Accordingly, transgenic plants over-expressing RTL1 are more sensitive to TYMV infection than wild-type plants, likely because RTL1 prevents the production of antiviral siRNAs. However, TCV, TVCV and CMV, which encode stronger suppressors of RNA silencing (VSR) than TYMV, are insensitive to RTL1 over-expression. Indeed, TCV VSR inhibits RTL1 activity, suggesting that inducing RTL1 expression and dampening RTL1 activity is a dual strategy used by viruses to establish a successful infection. These results reveal another level of complexity in the evolutionary battle between viruses and plant defenses.
Project description:H5N1 subtype highly pathogenic avian influenza virus has been spreading to Asia, Eurasia and African coutries. An original or six of recombinant H5N1 subtype influenza viruses with varying survivability were infected to chickens for elucidating genes correlated with pathogenicity.