Project description:Hemopoiesis entails a series of hierarchically organized events that proceed throughout cell specification and terminates with cell differentiation. Commitment needs the transcription factors effort that, in concert with microRNAs, drives cell fate specification, answering to promiscuous patterns of gene expression by turning on lineage-specific genes and repressing alternate lineage transcripts. Therefore microRNAs and mRNAs cooperate to direct cell fate decisions. We obtained microRNAs profiles from human CD34+ hemopoietic progenitor cells and in-vitro differentiated erythroblasts, megakaryoblasts, monoblasts and myeloblasts precursors and we analyzed them together with the gene expression profiles of the same populations. We found that for most part of microRNAs specifically up-regulated in one single cell progeny an inverse correlation between microRNAs and down-regulated putative targets expression levels occurs. We chose hsa-mir-299-5p as a model to get further insights into the possible biological relevance of this microRNAs-mRNAs expression integrated analytical approach and we asked if the forced expression of a single lineage-specific microRNA is able to control the cell fate of CD34+ progenitors grown in multilineage culture conditions. Gain and loss of-function experiments established that mir-299-5p regulates hemopoietic progenitors fate modulating reciprocally megakaryocytic-granulocytic versus erythroid-monocytic differentiation and has at least two genuine targets, the transcription factors CTCF and SOX4. CD34+ hematopoietic progenitor cells were transfected with the Amaxa Nucleofector Device, using the Human CD34 Cell Nucleofection Kit, accordingly to the manufacturer’s instructions (Amaxa Biosystem, Cologne, Germany), and 5µg of either the Pre-miR miRNA Precursor Molecule—Negative Control # 1 (NC1) or the hsa-mir-299-5p Pre-miR miRNA Precursor Molecule (299-5p) (Ambion, Austin, TX, USA) and pulsed with the program U-008. The dataset is composed of three independent paired experiment of 299-5p gain of-function (three hsa-299-5p Pre-miR miRNA Precursor Molecule nucleoporated samples and three paired Pre-miR miRNA Precursor Molecule—Negative Control # 1 transfected ones).
Project description:Hemopoiesis entails a series of hierarchically organized events that proceed throughout cell specification and terminates with cell differentiation. Commitment needs the transcription factors effort that, in concert with microRNAs, drives cell fate specification, answering to promiscuous patterns of gene expression by turning on lineage-specific genes and repressing alternate lineage transcripts. Therefore microRNAs and mRNAs cooperate to direct cell fate decisions. We obtained microRNAs profiles from human CD34+ hemopoietic progenitor cells and in-vitro differentiated erythroblasts, megakaryoblasts, monoblasts and myeloblasts precursors and we analyzed them together with the gene expression profiles of the same populations. We found that for most part of microRNAs specifically up-regulated in one single cell progeny an inverse correlation between microRNAs and down-regulated putative targets expression levels occurs. We chose hsa-mir-299-5p as a model to get further insights into the possible biological relevance of this microRNAs-mRNAs expression integrated analytical approach and we asked if the forced expression of a single lineage-specific microRNA is able to control the cell fate of CD34+ progenitors grown in multilineage culture conditions. Gain and loss of-function experiments established that mir-299-5p regulates hemopoietic progenitors fate modulating reciprocally megakaryocytic-granulocytic versus erythroid-monocytic differentiation and has at least two genuine targets, the transcription factors CTCF and SOX4. CD34+ hematopoietic progenitor cells were transfected with the Amaxa Nucleofector Device, using the Human CD34 Cell Nucleofection Kit, accordingly to the manufacturer’s instructions (Amaxa Biosystem, Cologne, Germany), and 5µg of either the Pre-miR miRNA Precursor Molecule—Negative Control # 1 (NC1) or the hsa-mir-299-5p Pre-miR miRNA Precursor Molecule (299-5p) (Ambion, Austin, TX, USA) and pulsed with the program U-008.
Project description:We analyzed the expression profiles of hsa-miR-145-5p or hsa-miR-31-5p-targeting genes relating to invasion or migration after co-overexpression of hsa-miR-145-5p and 31-5p Gene expression profiles of U87 cells after co-transfection with hsa-miR-145-5p and 31-5p mimics, and U87 cells after transfection miR mimic negative control
Project description:The transcription factor c-Myb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that c-Myb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which c-myb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Moreover, in order to identify the mRNA target through which hsa-miR-486-3p affects lineage fate decision, we profiled the mRNA changes in mimic transfected CD34+ HPC by means of Affymetrix GeneAtlas U219 strip array. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. Gene expression profile (GEP) was performed on total RNA derived from three independent experiments at 24h after the last nucleofection.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. RNA from CD34+ HPCs transfected with c-myb-targeting/non targeting control (NegCTR) synthetic siRNAs was collected 24 hours post-Nucleofection for a set of 5 independent experiments.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis. RNA from CD34+ HPCs transfected once/twice/3 times with c-myb-targeting/non targeting control siRNAs was collected for a set of 5 independent experiments.
Project description:The transcription factor c-Myb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that c-Myb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which c-myb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Moreover, in order to identify the mRNA target through which hsa-miR-486-3p affects lineage fate decision, we profiled the mRNA changes in mimic transfected CD34+ HPC by means of Affymetrix GeneAtlas U219 strip array. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis.
Project description:We analyzed the expression profiles of hsa-miR-145-5p or hsa-miR-31-5p-targeting genes relating to invasion or migration after co-overexpression of hsa-miR-145-5p and 31-5p
Project description:Hemopoiesis entails a series of hierarchically organized events that proceed throughout cell specification and terminates with cell differentiation. Commitment needs the transcription factors effort that, in concert with microRNAs, drives cell fate specification, answering to promiscuous patterns of gene expression by turning on lineage-specific genes and repressing alternate lineage transcripts. Therefore microRNAs and mRNAs cooperate to direct cell fate decisions. We obtained microRNAs profiles from human CD34+ hemopoietic progenitor cells and in-vitro differentiated erythroblasts, megakaryoblasts, monoblasts and myeloblasts precursors and we analyzed them together with the gene expression profiles of the same populations. We found that for most part of microRNAs specifically up-regulated in one single cell progeny an inverse correlation between microRNAs and down-regulated putative targets expression levels occurs. We chose hsa-mir-299-5p as a model to get further insights into the possible biological relevance of this microRNAs-mRNAs expression integrated analytical approach and we asked if the forced expression of a single lineage-specific microRNA is able to control the cell fate of CD34+ progenitors grown in multilineage culture conditions. Gain and loss of-function experiments established that mir-299-5p regulates hemopoietic progenitors fate modulating reciprocally megakaryocytic-granulocytic versus erythroid-monocytic differentiation and has at least two genuine targets, the transcription factors CTCF and SOX4.
Project description:The transcription factor cMyb plays a key role in human primary CD34+ hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that cMyb affects erythroid versus megakaryocyte lineage decision in part by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which cmyb affects lineage fate decision, we profiled the miRNA and mRNA changes in myb-silenced CD34+ HPCs. mRNA and miRNA expression for each sample were profiled by Affymetrix GeneAtlas U219 strip array and Exiqon Human miRNome PCR Panel, respectively. miRNA/mRNA data were integrated by Ingenuity Pathway Analysis. The integrative analysis of miRNA/mRNA expression changes upon c-myb silencing in human CD34+ HPCs highlighted a set of 19 miRNA with 150 anticorrelated putative target mRNAs. Among the miRNAs downregulated in myb-silenced progenitors with the highest number of predicted target mRNAs, we selected hsa-miR-486-3p based on the in vitro effects of its overexpression on HPCs commitment. Indeed, morphological and flow cytometric analyses after liquid culture showed that hsa-miR-486-3p overexpression in HPCs enhanced erythroid and granulocyte differentiation while restraining megakaryocyte and macrophage differentiation. Moreover, collagen-based clonogenic assay demonstrated a strong impairement megakaryocyte commitment upon hsa-miR-486-3p overexpression in CD34+ cells. Gene expression profiling of hsa-miR-486-3p overexpressing CD34+ cells enabled us to identify a set of 8 genes downregulated and computationally predicted, putative hsa-miR-486-3p targets. Among them, we selected c-maf transcript as upregulated upon myb silencing. Worth of note, c-maf silencing in CD34+ progenitor cells was able to reverse the affects of myb silencing on erythroid versus megakaryocyte lineage choice. Integrative miRNA/mRNA analysis highlighted a set of miRNAs and anticorrelated putative target mRNAs modulated upon myb silencing, therefore potential players in myb-driven HPCs lineage choice. Among them, we demonstrated the hsa-miR-486-3p/c-maf pair as partially contributing to the effects of myb on HPCs commitment. Therefore, our data collectively identified myb-driven hsa-miR-486-3p upregulation and subsequent c-maf downregulation as a new molecular mechanism through which cMyb favours erythropoiesis while restraining megakaryopoiesis.