Project description:Decades of work in placental (eutherian) species have constructed a paradigm of mammalian development, wherein the genome-wide erasure of parental DNA methylation is required for embryogenesis1-10. Whether such DNA methylation reprogramming is, in fact, conserved in other mammals is unknown. To resolve this point, we generated base-resolution DNA methylation maps in gametes, embryos and adult tissues of the opossum marsupial Monodelphis domestica, revealing extensive variations from the eutherian-derived model. In stark contrast with eutherians, the marsupial genome remains hypermethylated during the cleavage stages and in the embryo proper of the blastocyst. In the extra-embryonic trophectoderm DNA methylation is reduced, suggesting an important evolutionary conserved function for DNA hypomethylation in formation of the mammalian placenta. Furthermore, unlike in eutherians, the inactive X chromosome becomes globally DNA hypomethylated during embryogenesis. Using our DNA methylation profiles, we identify a candidate mechanism for imprinted X-inactivation in marsupials, via maternal promoter DNA methylation of the Xist-like non-coding RNA RSX11. How mammalian embryos employ DNA methylation to regulate their development is therefore more mechanistically diverse than current models can accommodate.
Project description:Decades of work in placental (eutherian) species have constructed a paradigm of mammalian development, wherein the genome-wide erasure of parental DNA methylation is required for embryogenesis1-10. Whether such DNA methylation reprogramming is, in fact, conserved in other mammals is unknown. To resolve this point, we generated base-resolution DNA methylation maps in gametes, embryos and adult tissues of the opossum marsupial Monodelphis domestica, revealing extensive variations from the eutherian-derived model. In stark contrast with eutherians, the marsupial genome remains hypermethylated during the cleavage stages and in the embryo proper of the blastocyst. In the extra-embryonic trophectoderm DNA methylation is reduced, suggesting an important evolutionary conserved function for DNA hypomethylation in formation of the mammalian placenta. Furthermore, unlike in eutherians, the inactive X chromosome becomes globally DNA hypomethylated during embryogenesis. Using our DNA methylation profiles, we identify a candidate mechanism for imprinted X-inactivation in marsupials, via maternal promoter DNA methylation of the Xist-like non-coding RNA RSX11. How mammalian embryos employ DNA methylation to regulate their development is therefore more mechanistically diverse than current models can accommodate.
Project description:Differential gene expression in immortalised fibroblasts derived two independent Nestor Guillermo Progeria Syndrome (NGPS) patients, compared to immortalised fibroblasts of an healthy individual
Project description:Decades of work in placental (eutherian) species have constructed a paradigm of mammalian development, wherein the genome-wide erasure of parental DNA methylation is required for embryogenesis. Whether such DNA methylation reprogramming is, in fact, conserved in other mammals is unknown. To resolve this point, we generated base-resolution DNA methylation maps in gametes, embryos and adult tissues of the opossum marsupial Monodelphis domestica, revealing extensive variations from the eutherian-derived model. In stark contrast with eutherians, the marsupial genome remains hypermethylated during the cleavage stages and in the embryo proper of the blastocyst. In the extra-embryonic trophectoderm DNA methylation is reduced, suggesting an important evolutionary conserved function for DNA hypomethylation in formation of the mammalian placenta. Furthermore, unlike in eutherians, the inactive X chromosome becomes globally DNA hypomethylated during embryogenesis. Using our DNA methylation profiles, we identify a candidate mechanism for imprinted X-inactivation in marsupials, via maternal promoter DNA methylation of the Xist-like non-coding RNA RSX11. How mammalian embryos employ DNA methylation to regulate their development is therefore more mechanistically diverse than current models can accommodate.
Project description:Sexual dimorphism depends on sex-biased gene expression, but the contributions of microRNAs (miRNAs) have not been globally assessed. We therefore produced an extensive small RNA sequencing dataset to analyse male and female miRNA expression profiles in mouse, opossum and chicken. Our analyses uncovered numerous cases of somatic sex-biased miRNA expression, especially in the mouse heart and liver. Sex-biased expression is explained by miRNA-specific regulation, including sex-biased chromatin accessibility at promoters, rather than piggybacking of intronic miRNAs on sex-biased protein-coding genes. In mouse, but not opossum and chicken, sex bias is coordinated across tissues such that autosomal testis-biased miRNAs tend to be somatically male-biased, whereas autosomal ovary-biased miRNAs are female-biased, possibly due to broad hormonal control. In chicken, which has a Z/W sex chromosome system, expression output of genes on the Z chromosome is expected to be male-biased, since there is no global dosage compensation mechanism that restores expression in ZW females after almost all genes on the W chromosome decayed. Nevertheless, we found that the dominant liver miRNA, miR-122-5p, is Z-linked but expressed in an unbiased manner, due to the unusual retention of a W-linked copy. Another Z-linked miRNA, the male-biased miR-2954-3p, shows conserved preference for dosage-sensitive genes on the Z chromosome, based on computational and experimental data from chicken and zebra finch, and acts to equalise male-to-female expression ratios of its targets. Unexpectedly, our findings thus establish miRNA regulation as a novel gene-specific dosage compensation mechanism.
Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 9,926 nuclei in opossum adult testis. This dataset includes three samples from three different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.