Project description:Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. Large-scale genetics strategies aimed at identifying genes involved in biofilm development are hampered by lack of a complete sexual cycle in this diploid yeast in addition to the tedious generation of homozygous gene-deletion mutants. Gene overexpression is an attractive alternative strategy for large-scale phenotypic analyses and gene-function studies. We combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (~10% of the genome) for genes affecting i) planktonic cell fitness and ii) biofilm development in mixed-population experiments. We found 5 genes whose overexpression affects planktonic strain fitness, including RAD53, RAD51, PIN4, orf19.2781, all encoding (or predicted to encode) regulators of DNA-damage response or cell-cycle progression and SFL2, involved in filamentous growth. We identified 16 and 4 genes (out of 531) whose overexpression respectively increases and decreases strain occupancy within the multi-strain biofilm. Strikingly, strains with increased abundance in the multi-strain biofilm were significantly enriched for genes encoding cell wall proteins (10 genes), including the glycosylphosphatidylinositol (GPI)-anchored proteins Pga15, Pga19, Pga22, Pga59, Pga32 and Pga41. Data validation experiments using either individually- or competitively-grown overexpression and/or the respective knock-out strains revealed that the identified genes differently contribute to biofilm formation during specific stages of biofilm development, including increased or decreased substrate adherence (IHD1, PGA32, PGA37, PGA15, PGA22, PGA59 and PGA19) or biofilm biomass growth and cohesion (PGA15, PGA59 and PGA22). In line with the hypothesis that cell wall genes contribute to biofilm development, we show that strains overexpressing PGA15 or PGA22 display altered cell wall structures. Our study reveals that cell wall proteins are important actors during C. albicans biofilm formation and illustrates the powerful use of signature tagging in conjunction with gene overexpression for the identification of genes involved in processes pertaining to C. albicans virulence. A total of 8 samples are included in this study. For fitness profiling of planktonic cells, 2 biological replicates were analyzed (samples Pool_Fitness_planktonic_rep1 and Pool_Fitness_planktonic_rep2). For quantification of strain abundance during biofilm formation, 6 biological replicates were analyzed (Pool_Biofilm_rep1, Pool_Biofilm_rep2, Pool_Biofilm_rep3, Pool_Biofilm_rep4, Pool_Biofilm_rep5, Pool_Biofilm_rep6). Genomic DNA was purified and used as template to PCR-amplify barcodes, which were then used as probes for microarray hybridization. This experiment was done twice independently. For quantification of strain abundance during multi-strain biofilm formation, strain pools were grown in minimal GHAUM medium with or without doxycycline, each inoculum was then diluted to an OD600 of 1 in fresh minimal GHAUM medium with or without doxycycline and left at room temperature for 30 min, to allow further overexpression. Plastic slides (ThermanoxM-bM-^DM-"; Nunc) were immersed in the inoculum for 30 min at room temperature to allow adhesion of cells to the plastic substrate. The plastic slides were then transferred to the glass vessel of a 40-mL incubation chamber. This vessel has two glass tubes inserted to drive the entry of medium and air, while used medium is evacuated through a third tube. The flow of medium is controlled by a recirculation pump (IsmatecM-BM-.) set at 0.6 mL.min-1 and pushed by pressured air supplied at 105 Pa, conditions minimizing planktonic phase growth and promoting biofilm formation. The chambers with the plastic substrate were incubated at 37C and biofilms were grown for 40h followed by genomic DNA extraction, barcode amplification and differential labeling (dox-treated samples with Cy5, untreated samples with Cy3) and hybridization to barcode microarrays.
Project description:To identify novel genes modulating Candida albicans biofilm formation, a screen of 2451 overexpression strains allowed us to identify 16 genes whose overexpression significantly reduced biofilm formation. Genome-wide expression and binding analyses were conducted upon overexpression of ZCF15 and ZCF26 and wild type planktonic and biofilm cells were performed. A ChIP assays was performed. Briefly, untagged strain (CEC4665) and two replicates each of ZCF15 (CEC5929 and CEC5930) and ZCF26 (CEC5931 and CEC5932) strain were grown in biofilm condition for 18 h and cells were cross-linked with 1% final concentration of formaldehyde for 25 min at 30°C.The DNA was immunoprecipitated with anti-protein A antibodies (Sigma Aldrich Cat. No. P3775). The immunoprecipitated (IP) DNA were used to determine the binding of Zcf15 and Zcf26 across the genome by ChIP-sequencing
Project description:Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (~10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature tagging in conjunction with gene overexpression for the identification of novel genes involved in processes pertaining to C. albicans virulence.
Project description:This study assessed proteomic profile of Candida albicans after serial systemic infection in a murine model. The animals were infected initially by wild-type C. albicans SC5314 (WT) with an inoculum of of 3.5x105 cells via lateral tail vein. Then, five days post-infection, the animals were euthanized and their kidneys were removed, homogenized in lysis buffer, plated on SDA and incubated for 24 h at 35 °C. Colonies recovered from infected kidney were used to prepare inoculum for the subsequent infections as described for WT, totalizing five serial passages (P1-P5) and they were also used to protein extraction. By LC-MS/MS, 479 proteins were identified, with 56 proteins statistically significant in abundance in P1, 29 proteins in P3 and 97 proteins in P4. Regarding biological processes, the majority of proteins were related to carbohydrate metabolism, stress response and amino acid metabolism. The proteins were also categorized according to their potential role in virulence factors such as biofilm production, yeast-to-hyphae transition, phenotypic switching, proteins related to stress response and uncharacterized proteins. Therefore, serial infection associated with proteomic approach enabled to deepen the knowledge about host-pathogen interaction.
Project description:Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms, as well as responding leukocytes, may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17-72 mmHg on live mice and 6.4-1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. No oxygen gradients were observed for heat-killed mouse scabs, suggesting that active metabolism by the viable bacteria and host cells contributed to the reduced oxygen partial pressure of the scabs. To characterize the metabolic activities of the bacteria in the mouse scabs, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions. Transcriptional profiling of two independent biological replicates of Pseudomonas aeruginosa biofilms, as grown to 72 hours and used as inocula applied to the murine wounds, was performed. A principle components analysis (PCA) was used to provide an overview of the transcriptome data from the 28-day mouse wound scab, comparing the data to the biofilm inoculum, and to published reports of P. aeruginosa biofilm and planktonic samples. The analysis shows that the transcriptome of the mouse wound scab was distinct from the biofilm inoculum that was applied to the wound, demonstrating a shift in biofilm gene expression following 28 days of infection. We sought to characterize P. aeruginosa activity within biofilms in the mouse wound model by isolating and identifying mRNA from the biofilms used as inocula and from the wound scabs 28 days post infection.
Project description:The foodborne pathogen Listeria monocytogenes has the ability to develop biofilm in food-processing environment, which becomes a major concern for the food safety. PrfA, a key transcriptional activator that regulates most of the known listerial virulence gene expression, has been shown to promote L. monocytogenes biofilm formation. In this study, the whole genome microarray was used to identify differentially expressed genes associated with the putative interaction between biofilm formation and PrfA in L. monocytogenes. Comparative transcriptome analyses indicated over 21.9% of the L. monocytogenes EGDe genes (627 out of 2857 predicted) were altered in their expression in biofilm cells relative to planktonic cell populations. These genes were classed into different functional categories which cover most of the biochemical functions encountered in bacterial cells, especially involved in ion transport, DNA repair, and cell wall biosynthesis based on significant enrichment of GO terms. Among them, 185 genes were identified to be associated with PrfA and biofilm formation by comparison of the whole gene expression profiles of L. monocytogenes EGDe and its ΔprfA mutant. The expression tendency of these PrfA-associated and biofilm-specific genes were mainly opposite in ΔprfA biofilm, and most of them are involved in phage-related function, membrane bioenergetics, and cell wall. Our results indicated that L. monocytogenes biofilm formation is probably controlled by the complex regulation network involved variable genes required for the different biological pathways. This regulatory network is modified in the prfA deletion mutant in order to maintain its stable biofilm lifestyle.
Project description:The aim of this study was to investigate the plastic colonisation process, to identify the active taxa involved in biofilm formation and the mechanisms used to initiate colonisation. To achieve this, a marine plastisphere characterised by active hydrocarbonoclastic genera was used as the inoculum for a short-term microcosm experiment using virgin low-density polyethylene as the sole carbon source. Following incubation for 1 and 2 weeks (representing early and late colonisation, respectively), a taxonomic and comparative metaproteomic approach was used to explore shifts in diversity and function.
Project description:Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants.