Project description:Early-weaning-induced stress causes diarrhea, thereby reduces growth performance of piglets. Gut bacterial dysbiosis emerges as a leading cause of post-weaning diarrhea. The present study was aimed to investigate the effect of capsulized fecal microbiota transportation (FMT) on gut bacterial community, immune response and gut barrier function of weaned piglets. Thirty-two were randomly divided into two groups fed with basal diet for 21 days. Recipient group was inoculated orally with capsulized fecal microbiota of health Tibetan pig daily morning during whole period of trial, while control group was given orally empty capsule. The results showed that the F/G ratio, diarrhea ratio, diarrhea index, and histological damage score of recipient piglets were significantly decreased. FMT treatment also significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, Methanobrevibacter and Sarcina in colon of recipient piglets were increased, and the relative abundances of Campylobacter, Proteobacteria, and Melainabacteria were significantly decreased compared with control group.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:The gut microbiota is closely associated with digestion, metabolism, immunity, and host health. The imbalance of the microbial community in livestock directly affects their well-being and, consequently, productivity. The composition and diversity of the gut microbiota are influenced not only by host genetics but also by environmental factors such as the microbial complexity of the rearing environment, feeds, and antibiotics. Here, we focus on the comparison of gut microbial communities in miniature pigs developed for xenotransplantation in specific pathogen-free (SPF) and conventional (non-SPF) facilities. To identify the disparities in gut microbial composition and functionality between these two environments, 16S RNA metagenome sequencing was conducted using fecal samples. The results revealed that the non-SPF pigs had higher gut microbiota diversity than the SPF pigs. The genera Streptococcus and Ruminococcus were more abundant in SPF pigs than in non-SPF pigs. Blautia, Bacteroides, and Roseburia were exclusively observed in SPF pigs, whereas Prevotella was exclusively found in non-SPF pigs. Carbohydrate and nucleotide metabolism, as well as environmental information processing, were predicted to be enriched in SPF pigs. In addition, energy and lipid metabolism, along with processes related to genetic information, cellular communication, and diseases, were predicted to be enriched in non-SPF pigs. This study makes an important contribution to elucidating the impact of environments harboring a variety of microorganisms, including pathogens, on the gut microbiota of miniature pigs. Furthermore, we sought to provide foundational data on the characteristics of the gut microbiota in genetically modified pigs, which serve as source animals for xenotransplantation.
Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response. The cecum, left lobe of the liver, and spleen were isolated from mice for microarray processing with three or more replicates for six expermental conditions: non-treated control, SAHC POD1, SAHC.AC POD2, SAHC.FMT POD2, SAHC.AC POD7, SAHC.FMT POD7
Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response.
Project description:Microbial RNAseq analysis of cecal and fecal samples collected from mice colonized with the microbiota of human twins discordant for obesity. Samples were colleted at the time of sacrifice, or 15 days after colonization from mice gavaged with uncultured or cultured fecal microbiota from the lean twins or their obese co-twins. Samples were sequenced using Illumina HiSeq technology, with 101 paired end chemistry. Comparisson of microbial gene expression between the microbiota of lean and obese twins fed a Low fat, rich in plant polysaccharide diet.
Project description:We illustrate an approach for integrating preclinical gnotobiotic animal models with human studies to understand the contributions of perturbed gut microbiota development to childhood undernutrition, and to identify new microbiota-directed therapeutic concepts/leads. Combining metabolomic and proteomic analyses of serially collected plasma samples with metagenomic analyses of serially collected fecal samples, we characterized the biological state of Bangladeshi children with severe acute malnutrition (SAM) as they transitioned to moderate acute malnutrition (MAM) after standard treatment. Gnotobiotic mice were subsequently colonized with a defined consortium of bacterial strains representing different stages of microbiota development in healthy children from Bangladesh. Administering different combinations of Bangladeshi complementary food ingredients to colonized mice and germ-free controls revealed diet-dependent changes in representation and metabolism of targeted weaning-phase strains, including accompanying increases in branched-chain amino acids, plus diet- and colonization-dependent augmentation of IGF-1/mTOR signaling. Host and microbial effects of microbiota-directed complementary food (MDCF) prototypes were subsequently examined in gnotobiotic mice colonized with post-SAM MAM microbiota and in gnotobiotic piglets colonized with a defined consortium of targeted age- and growth-discriminatory bacteria. Finally, ar andomized, double-blind study revealed a lead MDCF that affected the representation of targeted bacterial taxa and increased levels of biomarkers and mediators of growth, bone formation, neurodevelopment, and immune function.