Project description:Cytogenetically normal acute myeloid leukemia (CN-AML) comprise between forty and fifty percent of all adult acute myeloid leukemia (AML) cases. In this clinically diverse group molecular aberrations such as FLT3ITD, NPM1 and CEBPA mutations recently have added to the prognostic accuracy. Aberrant DNA methylation is a hallmark of cancer including AML. We investigated in total 89 CN-AML samples in a test and a validation cohort for genome-wide promoter DNA methylation with Illumina Methylation Bead arrays and compared them to normal myeloid precursors and global gene expression. IDH and NPM1 mutations were associated with different methylation patterns (p=0.0004 and 0.04, respectively). Genome-wide methylation levels were elevated in IDH mutated samples (p=0.006). We observed a negative impact of DNA methylation on transcription. Genes targeted by Polycomb group (PcG) proteins and genes associated with bivalent histone marks in stem cells showed increased aberrant methylation in AML (p<0.0001). Furthermore, high methylation levels of PcG target genes were independently associated with better progression free (OR 0.47, p=0.01) and overall survival (OR 0.36, p=0.001). In summary, genome wide methylation patterns show preferential methylation of PcG targets with prognostic impact in CN-AML. Genome wide methylation pattern study of cytogenetically normal AML
Project description:An increasing body of work reveals aberrant hypermethylation of genes occurring in and potentially contributing to the pathogenesis of myeloid malignancies. Several of these diseases, such as myelodysplastic syndromes (MDS), are responsive to DNA methyltransferase inhibitors. In order to determine the extent of promoter hypermethylation in such tumors we compared the distribution of DNA methylation of 14,000 promoters in MDS and secondary AML patients enrolled in a phase I trial of 5-azacytidine and the histone deacetylase inhibitor entinostat against de novo AML patients and normal CD34+ bone marrow cells. The MDS and secondary AML patients displayed more extensive aberrant DNA methylation involving thousands of genes than did the normal CD34+ bone marrow cells or de novo AML blasts. Aberrant methylation in MDS and secondary AML tended to affect particular chromosomal regions, occurred more frequently in Alu poor genes, and included prominent involvement of genes involved in the WNT and MAPK signaling pathways. DNA methylation was also measured at days 15 and 29 after the first treatment cycle. DNA methylation was reversed at day 15 in a uniform manner throughout the genome, and this effect persisted through day 29, even without continuous administration of the study drugs. Keywords: DNA methylation profiling Direct comparison of DNA methylation in bone marrow samples from patients with Myelodysplastic syndrome or secondary Acute Myeloid Leukemia (AML) at baseline and after in vivo treatment with 5-azacytidine + etinostat. A comparison to de novo normal karyotype AML was also performed. Two control groups were included: one consisting of 8 CD34+ bone marrow samples from healthy donors and a second one consisting of matched CD34+ and CD34- fractions from the bone marrows of 4 healthy donors.
Project description:An increasing body of work reveals aberrant hypermethylation of genes occurring in and potentially contributing to the pathogenesis of myeloid malignancies. Several of these diseases, such as myelodysplastic syndromes (MDS), are responsive to DNA methyltransferase inhibitors. In order to determine the extent of promoter hypermethylation in such tumors we compared the distribution of DNA methylation of 14,000 promoters in MDS and secondary AML patients enrolled in a phase I trial of 5-azacytidine and the histone deacetylase inhibitor entinostat against de novo AML patients and normal CD34+ bone marrow cells. The MDS and secondary AML patients displayed more extensive aberrant DNA methylation involving thousands of genes than did the normal CD34+ bone marrow cells or de novo AML blasts. Aberrant methylation in MDS and secondary AML tended to affect particular chromosomal regions, occurred more frequently in Alu poor genes, and included prominent involvement of genes involved in the WNT and MAPK signaling pathways. DNA methylation was also measured at days 15 and 29 after the first treatment cycle. DNA methylation was reversed at day 15 in a uniform manner throughout the genome, and this effect persisted through day 29, even without continuous administration of the study drugs. Keywords: DNA methylation profiling
Project description:Cytogenetically normal acute myeloid leukemia (CN-AML) comprise between forty and fifty percent of all adult acute myeloid leukemia (AML) cases. In this clinically diverse group molecular aberrations such as FLT3ITD, NPM1 and CEBPA mutations recently have added to the prognostic accuracy. Aberrant DNA methylation is a hallmark of cancer including AML. We investigated in total 89 CN-AML samples in a test and a validation cohort for genome-wide promoter DNA methylation with Illumina Methylation Bead arrays and compared them to normal myeloid precursors and global gene expression. IDH and NPM1 mutations were associated with different methylation patterns (p=0.0004 and 0.04, respectively). Genome-wide methylation levels were elevated in IDH mutated samples (p=0.006). We observed a negative impact of DNA methylation on transcription. Genes targeted by Polycomb group (PcG) proteins and genes associated with bivalent histone marks in stem cells showed increased aberrant methylation in AML (p<0.0001). Furthermore, high methylation levels of PcG target genes were independently associated with better progression free (OR 0.47, p=0.01) and overall survival (OR 0.36, p=0.001). In summary, genome wide methylation patterns show preferential methylation of PcG targets with prognostic impact in CN-AML.