Project description:The genetics, social, cultural and environmental factors pose a great challenge for the diagnosis and treatment of coronary heart disease among different racial groups. We aimed to identify the differentially expressed genes involved in coronary heart disease in Chinese Han people as an aid for screening and diagnosing coronary heart disease. We used microarrays to detail the global programme of gene expression to identify the differentially gene between the patients with coronary heart disease and healthy people in Chinese Han people Three patients with coronary heart disease and three healthy people in Chinese Han people were recruited,total RNA of each samples were extracted from peripheral blood to hybridize with Affymetrix microarrays.
Project description:The genetics, social, cultural and environmental factors pose a great challenge for the diagnosis and treatment of coronary heart disease among different racial groups. We aimed to identify the differentially expressed genes involved in coronary heart disease in Chinese Han people as an aid for screening and diagnosing coronary heart disease. We used microarrays to detail the global programme of gene expression to identify the differentially gene between the patients with coronary heart disease and healthy people in Chinese Han people
Project description:Immune cell activation in heart failure is poorly understood. We profiled circulating leukocytes in humans with heart failure with preserved ejection fraction and non heart failure controls to identify novel changes associated with HFpEF diagnosis
Project description:Despite the significant reduction in the overall burden of cardiovascular disease (CVD) over the past decade, CVD still accounts for a third of all deaths in the United States and worldwide each year. While efforts to identify and reduce risk factors for atherosclerotic heart disease (i.e. hypertension, dyslipidemia, diabetes mellitus, cigarette smoking, inactivity) remain the focus of primary prevention, the inability to accurately and temporally predict acute myocardial infarction (AMI) impairs our ability to further improve patient outcomes. Our diagnostic evaluation for the presence of coronary artery disease relies on functional testing, which detects flow-limiting coronary stenosis, but we have known for decades that most lesions underlying AMI are only of mild to moderate luminal narrowings, not obstructing coronary blood flow. Accordingly, there is a dire need of improved diagnostics for underlying arterial plaque dynamics, fissure and rupture. Here we describe the designation of a specific gene expression pattern acting as a molecular signature for acute myocardial infarction present in whole blood of patients that was determined using microarray analysis of enriched circulating endothelial cells (CEC). We isolated circulating endothelial cells from patients experience acute myocardial infartion and healthy cohorts, and measured gene expression using the HG-133U_PLUS_2 microarray Circulating endothelial cells were isolated from patients experiencing acute myocardial infarction (n=49) and from healthy cohorts (n=50). The patients were separated into a discovery cohort (n=43) for biomarker discovery and model training; and into a validation cohort (n=56) for biomarker validation and model testing.
Project description:Study aims to identify circulating small RNAs that report early heart injury after cardiac surgery with a view to translating them to the early diagnosis of myocardial infarction
Project description:Despite the significant reduction in the overall burden of cardiovascular disease (CVD) over the past decade, CVD still accounts for a third of all deaths in the United States and worldwide each year. While efforts to identify and reduce risk factors for atherosclerotic heart disease (i.e. hypertension, dyslipidemia, diabetes mellitus, cigarette smoking, inactivity) remain the focus of primary prevention, the inability to accurately and temporally predict acute myocardial infarction (AMI) impairs our ability to further improve patient outcomes. Our diagnostic evaluation for the presence of coronary artery disease relies on functional testing, which detects flow-limiting coronary stenosis, but we have known for decades that most lesions underlying AMI are only of mild to moderate luminal narrowings, not obstructing coronary blood flow. Accordingly, there is a dire need of improved diagnostics for underlying arterial plaque dynamics, fissure and rupture. Here we describe the designation of a specific gene expression pattern acting as a molecular signature for acute myocardial infarction present in whole blood of patients that was determined using microarray analysis of enriched circulating endothelial cells (CEC). We isolated circulating endothelial cells from patients experience acute myocardial infartion and healthy cohorts, and measured gene expression using the HG-133U_PLUS_2 microarray
Project description:Due to the insidious onset and the difficulty to diagnose and intervene, it is particularly important to find the diagnostic markers of diabetic coronary microcirculation disorder (CMD) and therapeutic targets. Circulating exosomes, as endogenous exosomes derived from multiple tissue cells, mediate communication between cells and tissues, may serve as a key point for future diagnosis, prognosis and personalized treatment of CMD in diabetes. Therefore, we isolated serum exosomes from patients with diabetes, as well as patients with CMD or coronary artery disease (CAD) respectively. We explored the differences in characteristics between three circulating exosomes.
Project description:Myocardial infarction (MI), the most severe manifestation of coronary artery disease, is a multifactorial pathophysiologic process. Here, we constructed a MI mouse model through ligation of the proximal left anterior descending coronary artery. Then we detected and analysed multi-omics (transcriptome and proteome) at different time points (Control, 10 mininte, 1 hour, 6 hour, 24 hour and 72 hour) after MI. Immune-related pathway, pyroptosis pathway, and autophagy pathway r were significantly increased after MI.