Project description:Vascular smooth muscle cells (VSMCs) within atherosclerotic lesions undergo a phenotypic switching in a KLF4-dependent manner. Glycolysis plays important roles in transdifferentiation of somatic cells, however, it is unclear whether and how KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions. Here, we show that KLF4 upregulation accompanies VSMCs phenotypic switching in atherosclerotic lesions. KLF4 enhances the metabolic switch to glycolysis through increasing PFKFB3 expression. Inhibiting glycolysis suppresses KLF4-induced VSMCs phenotypic switching, demonstrating that glycolytic shift is required for VSMCs phenotypic switching. Mechanistically, KLF4 upregulates expression of circCTDP1 and eEF1A2, both of which cooperatively promote PFKFB3 expression. TMAO induces glycolytic shift and VSMCs phenotypic switching by upregulating KLF4. Our study indicates that KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions, suggesting that a previously unrecognized KLF4-eEF1A2/circCTDP1-PFKFB3 axis plays crucial roles in VSMCs phenotypic switching.
Project description:Vascular smooth muscle cells (VSMCs) within atherosclerotic lesions undergo a phenotypic switching in a KLF4-dependent manner. Glycolysis plays important roles in transdifferentiation of somatic cells, however, it is unclear whether and how KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions. Here, we show that KLF4 upregulation accompanies VSMCs phenotypic switching in atherosclerotic lesions. KLF4 enhances the metabolic switch to glycolysis through increasing PFKFB3 expression. Inhibiting glycolysis suppresses KLF4-induced VSMCs phenotypic switching, demonstrating that glycolytic shift is required for VSMCs phenotypic switching. Mechanistically, KLF4 upregulates expression of circCTDP1 and eEF1A2, both of which cooperatively promote PFKFB3 expression. TMAO induces glycolytic shift and VSMCs phenotypic switching by upregulating KLF4. Our study indicates that KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions, suggesting that a previously unrecognized KLF4-eEF1A2/circCTDP1-PFKFB3 axis plays crucial roles in VSMCs phenotypic switching.
Project description:Vascular smooth muscle cells (VSMCs) within atherosclerotic lesions undergo a phenotypic switching in a KLF4-dependent manner. Glycolysis plays important roles in transdifferentiation of somatic cells, however, it is unclear whether and how KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions. Here, we show that KLF4 upregulation accompanies VSMCs phenotypic switching in atherosclerotic lesions. KLF4 enhances the metabolic switch to glycolysis through increasing PFKFB3 expression. Inhibiting glycolysis suppresses KLF4-induced VSMCs phenotypic switching, demonstrating that glycolytic shift is required for VSMCs phenotypic switching. Mechanistically, KLF4 upregulates expression of circCTDP1 and eEF1A2, both of which cooperatively promote PFKFB3 expression. TMAO induces glycolytic shift and VSMCs phenotypic switching by upregulating KLF4. Our study indicates that KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions, suggesting that a previously unrecognized KLF4-eEF1A2/circCTDP1-PFKFB3 axis plays crucial roles in VSMCs phenotypic switching.
Project description:RNA sequencing of primary human aortic or arterial VSMCs after stimulation with transforming growth factor beta-1 (TGFβ1) revealed marked IL11 upregulation. In vitro, IL11 stimulation of VSMCs resulted in phenotypic switching by increased ECM production and migration/invasion. Neutralizing IL11 antibody treatment abolished phenotypic switching in VSMCs. IL11 plays an important and non-redundant role in VSMC phenotypic switching.
2020-10-20 | GSE142417 | GEO
Project description:SEMA7A promotes disturbed flow-induced phenotypic switching of VSMCs
Project description:To comprehensively understand the mechanism by which MYPT1 modulates the phenotypic switching of VSMCs after ischemic stroke, the proteins of cortical small vessel from MYPT1SMKO and WT mice subjected to MCAO or sham group were collected for proteomic screening.
Project description:We applied the transcriptome profiling (RNA-seq) for high-throughput profiling of genes changes in the phenotypic switch of VSMCs. Rat primary VSMCs were divided into 3 groups, control, PDGF-BB, PDGF-BB+PTUPB,and mRNA sequence were performed. We found that Cell cycle related genes and cellular senescence related genes were significantly upregulated by PDGF-BB and significantly reversed by PTUPB. Subsequently, we deleted PTTG1 as a key gene for PTUPB to reverse phenotypic switching in VSMCs. Our study provided the transcription changes by RNA-seq in VSMC phenotypic switch, and found that PTUPB played a crucial role in correcting the dysregulation of sEH/COX-2 derived ARA metabolism in VSMC phenotypic switch
Project description:The phenotypic switching of vascular smooth muscle cells (VSMCs) leads to neointimal hyperplasia, which is the underlying cause of vascular remodeling diseases such as atherosclerosis and hypertension. Novel hidden proteins encoded by circular RNAs (circRNAs) play crucial roles in disease progression. Our study identified a new protein derived from a circRNA in VSMCs and demonstrated its potential role in regulating vascular remodeling. We discovered a novel hidden protein, p-414aa, encoded by circSETD2(14,15), which can inhibit vascular remodeling. Both circSETD2(14,15) and p-414aa may serve as potential therapeutic targets for vascular remodeling diseases. In this study, we demonstrated that the new protein p-414aa encoded by circSETD2(14,15) inhibits VSMC proliferation and neointimal hyperplasia through the HuR/C-FOS axis. In summary, our data provide a molecular framework for the phenotypic switching of vascular smooth muscle cells.
Project description:Chronic kidney disease (CKD) accelerates vascular calcification (VC) via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. The miRNA transcriptome of sEVs revealed a depletion of several miRNAs in CKD. Their expression levels in sEVs from CKD patients were correlated to kidney function. This study revealed the transcriptomic landscape of miRNAs propagated in sEVs in CKD. We investigated the therapeutic potential of miRNAs in VC.
Project description:Vascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention.