Project description:Budding yeast can switch from growth as ovoid cells to growth in an adhesive and invasive filamentous form. Limiting availability of reduced nitrogen is thought to be the signal that induces filamentous growth. In contrast, we find that filamentation is a thigmotropic response. In the absence of repressive agents, growth on a surface is necessary and sufficient to induce filamentation, whereas nitrogen limitation is neither sufficient nor necessary. The thigmostimulus is transmitted to the genome via a MAP-kinase pathway that has been linked to filamentation. The FLO11 gene, encoding a cell-surface mucin protein, maps genetically at the top and at the bottom of this thigmotropism MAP-kinase pathway. These results suggest that yeast differentiation to the filamentous form is primarily a response to surface contact for the purposes of colonization and invasion, rather than foraging for nutrients.
Project description:Fungal group III histidine kinases are the molecular targets of some classes of fungicides. In contrast to the yeast Saccharomyces cerevisiae, the fungal pathogen Candida albicans possesses a group III histidine kinase, CaNik1p, also called Cos1p. To investigate the function of CaNIK1, the gene was expressed in S. cerevisiae. The transformants became susceptible to antifungal compounds to which the wild-type strain is resistant. The susceptibility was related to the activation of the MAP kinase Hog1p of the osmotic stress response pathway. Gene expression analysis revealed a strong overlap of the responses to osmotic stress and to fludioxonil at early time points. While the response to fludioxonil persisted, the response to osmotic stress was diminished with time.
Project description:Saccharomyces cerevisiae developed elegant mechanisms to monitor nutrient availability and trigger adaptative responses to nutrient deficiency. Nutrient sensing requires close coordination of cell surface sensors with intracellular mechanisms. This yeast senses the presence of glucose by two modified hexose transporters, Rgt2 and Snf3 (regulating expression of genes encoding hexose transporters) and the G-protein coupled receptor Gpr1 (modulating Protein Kinase A (PKA) activity).. It has been difficult to differentiate between cellular responses mediated by cell surface and intracellular sensors, respectively. Using a strain that is devoid of glucose uptake, we show that the mere presence of glucose does not elicit any glucose-dependent transcriptional responses. This indicates that signals generated by surface sensors are not sufficient to mediate glucose-dependent transcriptional responses. Instead, intracellular glucose or metabolites derived from it are required for transcriptional changes associated with glucose exposure. We used microarrays from biological triplicate samples to measure the global transcriptional response to sudden addition of glucose to yeast cells growing at steady state on ethanol. The experiment was conducted using a strain that is devoid of glucose uptake and compared with an isogenic strain.
Project description:Frozen dough baking is useful method in the modern bread-making industry. However, the fermentation activity of bakerâs yeast dramatically decreased after thawing due to freeze injuries, because bakerâs yeast cells contained in dough experience freeze injuries during freeze-thaw processes. Here, we performed genome-wide expression analysis to determine genetic response in bakerâs yeasts under freeze-thaw condition using a DNA microarray analysis. Functional and clustering analyses in gene expression reveal that genes could be characterized by the term of freeze-thaw stress. Under short-term freeze stress (freeze treatment for 3 day), genes involved in ribosomal protein were up-regulated. Under long-term freeze stress (freeze treatment for longer than 7 day), genes involved in energy synthesis were up-regulated. In each phase, genes involved in protein damage, several stresses and trehalose and glycogen metabolism were also up-regulated. Through these freeze stress, yeast cells may improve reduced efficiency of translation and enhanced cell protection mechanism to survive under freeze stress condition. These regulations of these genes would be controlled by the cAMP-protein kinase A pathway. Experiment Overall Design: All experiments were done in duplicate from two independent samples.